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Abstract

In this work we analyze a neural network structure capable of achieving a
degree of invariance to speaker vocal tracts for speech recognition applica-
tions. It will be shown that invariance to a speaker’s pitch can be built into
the classification stage of the speech recognition process using convolutional
neural networks, whereas in the past attempts have been made to achieve in-
variance on the feature set used in the classification stage. We conduct exper-
iments for the segment-level phoneme classification task using convolutional
neural networks and compare them to neural network structures previously
used in speech recognition, primarily the time-delayed neural network and the
standard multilayer perceptron. The results show that convolutional neural
networks can in many cases achieve superior performance than the classical
structures.
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Chapter 1

Introduction

Speech recognition has been a popular field of research since the first speech recognizer

was created in 1952 at Bell Labs [10]. There are many variants of speech recognition

systems depending on the application. There exist many systems for recognizing only

a limited vocabulary; an example of this is the common automatic answering machine

which asks users to speak one of several words that are built into a database. Another

limitation often made on speech recognition systems is the speaker; many systems,

for example, are trained to recognize a particular user’s voice, which increases the

recognition performance.

After the results of [10] in recognizing isolated spoken digits, it was believed that

the methods could easily be extended to recognizing any continous speech, and in fact

it was stated for many years that the solution was only 5 years away [11]. Although

great accuracy can be accomplished in the limited cases, such as the small vocabulary

and particular speaker setups described above, creating a robust automatic-speech

recognition (ASR) system is still an ongoing area of research. These systems, intended

to recognize large-vocabulary speech from any user, have had mixed success. There

are a great deal of applications of such systems including dictation software, easier

1
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searches, automatic transcription of video and audio files for easy search and reference,

along with a host of other applications. Unfortunately these systems are currently still

not robust enough for many real-life applications. The shape of the vocal tract of the

user as well as their accent and noise from the environment and/or noise introduced

through the processing of their speech, such as in digital phone lines, creates a great

deal of problems for the automatic speech recognizer.

One of the primary differences in the shape of the vocal tract is the length of

the vocal tract, which directly affects the pitch of a person’s voice. Adult vocal tract

lengths (VTLs) may differ by up to 25 percent. Thus vocal tract length is one of the

key factors determining differences between the same utterances spoken by different

speakers. Generally speakers with a longer vocal tract will produce lower pitched

sounds [12]. A common approximation is that in the linear spectral domain, the short-

time spectra of two speakers A and B, creating the same utterance, are approximately

related by a constant factor α with the scaling relation SA(w) = SB(αw), where SA(w)

and SB(w) are the short-time spectra of similar utterances spoken by speaker A and

speaker B. Without further processing within the ASR system this spectral scaling

causes degradation in the system performance [13].

Various methods have been proposed that attempt to counteract this scaling ef-

fect. Some methods attempt to adapt the acoustic models to the features of each

utterance, these methods are known as MLLR techniques. Another set of methods

attempts to normalize the features obtained. The most popular method in this group

is called VTL normalization. These methods have in common the need for an addi-

tional adaptation step within the recognition process of the ASR system. Another

group of methods attempts to extract features that are invariant to the spectral ef-

fects of VTL changes. Though not as mature these methods have a low computation

cost and do not require any adaptation stage [13].
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In this work we attempt to apply a classifier that has the properties of invari-

ance built into the classification in order to achieve invariance to VTL without any

additional steps of adaptation or transformation of the feature set. This classifier

is a variant of the convolutional neural network (CNN) which has been successfully

applied in the field of image recognition.

Previous work has been done in applying a similar classifer method to Chinese

syllable recognition [14]. However, this work did not focus on exploiting the invari-

ance properties of the network for achieving the invariance to VTL. Another work

attempted to use a block-windowed neural network(BWNN) [15] to achieve invariance

in the frequency domain. However this network lacked several structural advantages

of the CNN, in particular the subsampling layer was not used in this work as well as

the multiple feature maps generally employed in the CNN.



Chapter 2

Preliminaries

In this section we present the background material required for understanding the

work undergone in this thesis. The production of speech, the machine learning ap-

proach to speech recognition, hidden Markov models (HMM), and neural networks

will be discussed.

2.1 The Speech Signal

In this section we describe the basics of speech production and perception. The

phoneme is the basic unit of language and is heavily used when discussing speech

recognition. Speech utterances that form words in a language are generally grouped

into phonemes, which are the smallest segmentable units of sounds that can form

meaningful contrasts between utterances. Even though two speech sounds, or phones,

might be different, if they are close enough to be indistinguishable to a native language

speaker, then they are grouped together into one phoneme. For example the ’k’ sound

in “kit” and “skill” is actually pronounced differently in most dialects; however, this

sound is generally indistinguishable to most speakers [16]. We will begin our look at

4



2.1 The Speech Signal 5

the speech production process starting from when the speaker formulates a message

that he wants to transmit to the listener via speech. At this point, we assume the

speaker has the text of the message in mind. The message is then converted into

language code, a set of phoneme sequences corresponding to the sounds that make

up the words, along with information about the duration of sounds, loudness of the

sounds and pitch accent associated with the sounds [17]. Once this language code

is constructed the person executes a series of neuromuscular commands to cause the

vocal cords to vibrate when appropriate and to shape the vocal tract such that the

proper sequence of speech sounds is created and spoken. Figure 2.1 shows a basic

diagram of the position of the vocal chords and tract. The actual speech production

occurs as air enters the lungs through the trachea, the tensed vocal cords within the

larnyx vibrate due to the air flow. The air flow is chopped into quasi-periodic pulses

which are then modulated in frequency in passing through the throat and mouth

cavaties. Depending on the position of the various articulators (jaw, tongue, lips, and

mouth) different sounds are produced.

Figure 2.1 Human speech production from [1]

At the other end of this process is the listener. The acoustic wave enters the ear
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and pushes against the eardrum. Using the ossicles as levers, the force of this push is

transmitted to the oval window. A large motion of the eardrum leads to smaller but

more forceful motion at the oval window. This pushes on the fluid of the inner ear

and waves begin moving down the basilar membrane of the cochlea [2].

Figure 2.2 Middle ear as depicted in [2]

This basilar membrane provides a critical function which we attempt to mimic in

many speech recognition feature extraction methods. This membrane mechanically

calculates a runnning spectrum of the incoming signal. The membrane is tapered

and it is stiffer at one end than at the other. The dispersion of fluid waves causes

sound input of a certain frequency to vibrate some locations of the membrane more

than other locations. Figure 2.2 shows the basilar membrane is located at the circular

organ in the ear. If we unroll the cochlea as in Figure 2.3, one can see an example

of how different stretches of the membrane’s response provide a physical version of

a spectrum for the acoustic signal [2]. The frequency categories created by this

membrane are not linear, inspiring the feature extraction method used in this work.

After the speech signal has been processed by the basilar membrane, a neural

transduction process then converts the spectral signal at the output of the basilar

membrane into activity signals on the auditory nerve. This activity in the nerves is

converted into a language code at the higher processing centers of the brain. Finally a
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Figure 2.3 Basilar membrane as depicted in [2]

semantic analysis of this language code by the brain allows for message comprehension

[17].

2.2 Categories of Phoneme Speech

There are several primary groupings for the basic phoneme utterances. Voiced speech

sounds include the categories of utterances vowel, diphthong, nasal, and stop con-

sonant. These are generated by chopping the air flow coming from the lungs into

puffs of air, causing a semi-periodic waveform. The other broad class of sounds is

unvoiced speech, including unvoiced fricatives and unvoiced stop consonants. These

are generated without vocal chord vibrations. They are caused by a turbulent air

flow which creates a waveform with noisey characteristics [18].

To further group phonemes we must consider the location of the narrowest con-

striction along the vocal tract during sound production. For example, different con-

sonants are generally associated with different points of maximum constriction. The

consonants /b/,/p/ are associated with a maximum point of constriction at the lips,
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while /t/, /d/ have points of maximum constriction behind the teeth. The cate-

gories of vowel, diphthong, and semivowel are caused by different constrictions of the

tongue. For example the sound /iy/ is produced by the high position of a tongue

hump, while the sound /ae/ is formed by a low tongue hump.

2.3 The Pattern Recognition Approach to Speech

Recognition

Continous speech recognition systems today have some of the same basic character-

istics of systems developed for other pattern recognition problems, such as feature

extraction, an optional feature space reduction, and a trainable recognizer. The

recognition stage generally involves combinations of several models, for sub-word

units which are used to determine the most likely sub-word unit, word level models

which combine the results of the previous model to generate the most likely sequences

of words. Finally a sentence model can be used to determine the most likely sequences

of words.

Raw speech is generally sampled at a high frequency, most commonly 16 kHz or 8

kHz; this produces a very large number of data points. Furthermore this raw speech,

essentially giving the power levels over time, provides little distinguishing information

about the utterance [11]. The first stage of the speech recognition process, the feature

extraction, takes the raw digital speech signal, which consists of a large number of

values per second and converts it into what is described as frames. This compresses

the data by factors of 10 or more and extracts the useful information about the speech

signal. A diagram of this process is shown in Figure 2.4. Some of the most relevant

feature extraction techniques will be discussed.

Larger feature vectors can often greatly increase training and recognition times
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Figure 2.4 Feature extraction process as shown in [3]

for typical recognizers, such as the HMM, making them impractical. Furthermore

redundancies within the data can cause worse performance in the recognizer. For this

reason feature space reduction, used in many systems, attempts to reduce the feature

vectors to a smaller set of features, while losing the least information possible. Com-

mon techniques for performing this reduction are linear discriminant analysis (LDA),

Fisher’s discriminant analysis (FDA), and principal component analysis (PCA). These

methods generally attempt to find a transformation of the feature space which opti-

mizes the separation of the classes.

Generally the recognizer attempts to segment the input speech and recognize

each input feature as part of a phoneme, the smallest phonetic unit. However, many

variants of this exist such as syllable and word-level classification. The output of the

recognizer will generally be a string of phonemes or in some cases strings of words or

syllables. For phoneme and likely for syllable recognition the next phase of the system

involves taking these outputs and using a model of connections between phonemes

to determine the most likely sequence of words. A language model can further help

refine the results at the word level. It should be noted that this view is simplistic and

some systems can be structured quite differently.
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2.4 Feature Extraction

This section describes several popular feature extraction methods including the ones

used for this work. For each of these methods the speech signal is divided into

frames of length 10-30ms depending on the method. The technique is then applied

to each slice of speech signal resulting in an output as demonstrated in Figure 2.4.

Three of the techiniques: Mel frequency cepstral coefficients (MFCC), short time

fourier transform (STFT), and the gammatone filterbank with ERB scaling are of

particular interest when discussing invariance in the frequency domain. They are all

time-frequency analysis methods that are closely related.

2.4.1 Mel Frequency Cepstral Coeffients (MFCC)

This feature extraction method is based on auditory models which approximate hu-

man auditory perception. It is the most widely used feature extraction method. This

method is summarized in Figure 2.5. The DFT is applied to the speech signal and

the phase information is removed because pereceptual studies have shown that the

amplitude is much more important. The logarithm of the amplitude spectrum is com-

puted because the perceived loudness of a signal has been found to be approximately

logarithmic. If the inverse fourier transform is now taken, the resulting components

are the cepstral coefficients which have important applications in different areas of

signal processing. However perceptual modeling has found that some frequencies are

more important based on the mel scale. Thus the next step is to smooth the signal

based on the mel scale.

A simple example demonstrates how to rescale the spectrum on the mel scale.

Rescaling the signal in terms of other auditory frequency scales is analogous. Let’s

assume we start with 64 values for the log of the amplitude DFT coefficients. We
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Figure 2.5 MFCC feature extraction

subdivide these into 8 bins. Let’s assume the mel scale range is between 0-8000 mel.

The bins on a linear scale will then range 0-1000,1000-2000,...,7000-8000 mel. We

now convert these bins to Hz to determine the start and end of the frequency bin,

this is done based on the mel scale shown in Figure 2.6. For example 0-1000 mel

becomes 0-1000 Hz whereas 1000-2000 mel becomes 1000-3400 Hz. As we can see

using this binning process the lower frequency coefficients become more important

as the frequency bins at higher frequencies become larger. Generally to compute a

single representative component for each bin the values in each bin are averaged using

triangular filters, which emphasize the central frequencies in the bin more than the

frequencies at the edge of the bin. Eventually we will have 8 values for each bin. We

take the discrete cosine transform (DCT) to decorrelate the signal components, this

produces what is known as the Mel frequency cepstral coefficients (MFCC) [19].
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Figure 2.6 Mel Scale [4]

2.4.2 Linear Predictive Coding (LPC)

The method of LPC provides a model the action of the vocal tract upon the excitation

source. As seen in Figure 2.7, the model involves the excitation source, u(n), either

periodic as in the case of voiced utterances or noise as in the case of unvoice utterances.

We model the vocal tract filtering as an all-pole filter H(z) with coefficients a1..ap.

Thus given the speech sample at time n, s(n), can be approximated as a linear

combination of the past speech signals plus the excitation.

s(n) = −(a1s(n− 1) + a2s(n− 2) + ...+ aps(n− p)) + u(n) (2.1)

Here the coefficients a1, ..., ap can be seen as the coefficients of a digital filter. This

means that the speech signal can be seen as a digital filter applied to the source

sound coming from the vocal chords and scaled by a gain as seen in Figure 2.7. The

parameters of this model are commonly solved for using the Levinson-Durbin algo-

rithm [20]. These coefficients give a condensed representation of the speech signal.



2.4 Feature Extraction 13

Figure 2.7 A diagram of the linear predictive coding (LPC) model. Here the
branch V refers to the voiced utterances, while branch UV refers to unvoiced
utterances from the vocal chords. The filter we model, H(z), represents the vocal
tract [1].

The frequency domain of the H(z) filter often has peaks, at representative frequen-

cies, called formants which encode key speech information. This makes this feature

extraction technique a popular one for applications in speech encoding and compres-

sion [1].

2.4.3 Short-Time Fourier Transform (STFT)

The classic method of obtaining a time-frequency representation of a speech signal is

called the short-time fourier transform (STFT). The STFT is defined as

X(m,ω) =
∞∑

n=−∞

x[n]w[n−m]e−jωn (2.2)

where X(m,ω) is the STFT and x[n] is the speech signal. Here w is the rectangular

windowing function, m is the time index of the STFT frame, n is the sample time,

and ω is the frequency bin. A more intuitive way of looking at this technique is

noting that this method applies a DFT on successive, generally overlapping, frames
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Figure 2.8 Spectrogram of a speech signal [5]

of the speech signal. The result of applying this transformation can be seen using

what is called a spectrogram as shown in Figure 2.8 [21]. In the figure we can see

the articulated speech in the time domain

The STFT has a great deal of limitations in speech recognition applications. The

primary issue is that the STFT linearly distributes the frequency bins. This is in con-

trast to the mel scale described previously or the ERB scale which will be described,

the STFT gives the same amount of resolution and weight to high frequencies and

low frequencies. This causes a lot of information to be of little consequence, since the

primary parts of the speech signal are contained within the lower frequencies. For

this reason the STFT is not popularly used; however it is a good example of a time-

frequency representation, and this method can help us understand the advantages of

the gammatone filter bank model with the ERB scale.

Another way to view the STFT is as a set of ideal bandpass filters applied to

the speech signal. This interpertation can help us better understand the gammatone
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filterbank model which is the primary feature extraction method used in this work.

We can obtain this interpertation by regrouping the terms in the STFT as follows,

X(m,ω) =
∞∑

n=−∞

[x[n]e−jωn]w[n−m] (2.3)

if we define x[n]k = [x[n]e−jωkn] then the STFT becomes

X(m,ω) = [xk ∗ Flip(w)](m) (2.4)

We can interpert this equation as a filter bank. For each frequency bin, k, the signal

is shifted down in the frequency domain so that the frequencies at wk are at baseband,

this gives x[n]k. Then the signal is convolved with the low-pass filter defined by the

reverse of the windowing function, Flip(w), thereby producing a series of filter bank

outputs for various values of k. A graphical interpertation is shown below in Figure

2.9 [6].

Figure 2.9 Filter bank model of the STFT from [6]
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2.4.4 Gammatone Filter Bank and the ERB Scale

The gammatone filter is a popular approximation to the filtering performed by the

human ear. In some works from physiologists the following expression is used to

approximate the impulse response of a primary auditory fibre.

g(t) = tn−1e−2πbtcos(2πf0t+ φ) (2.5)

where n is the order, b is a bandwith parameter, f0 is the filter centre frequency and φ

is the phase of the impulse response [22]. One way of thinking about this function is

by noting that the first part is the gamma function from statistics and the cosine term

is a tone when the frequency is in the auditory range. Thus this can be thought of

as a burst of the centre frequency of the filter enclosed in a gamma shaped envelope.

Going back to our filterbank analysis of the STFT we can think of this gammatone

filter as a replacement to the rectangular filters of the STFT. Unlike the triangular

filters described for the MFCCs, these filters are based on physiological functions of

the ear.

A bank of gammatone filters is commonly used to simulate the motion of the

basilar membrane within the cochlea as a function of time. The output of each

filter mimics the response of the memberane at a particular place. The filterbank is

normally defined in such a way that the filter center frequencies are distributed across

frequency in proportion to their bandwith. The bandwith of the filter is determined

using the equation for an ERB, also derived using physiological evidence in [23] to

be:

ERB = 24.7(4.37× 10−3 × f + 1) (2.6)

Thus the higher the center frequency the bigger the bandwith of the filter.

Similar to the Mel scale in the MFCC the ERB scale is used to accentuate the

more relevant frequency bands and suppress the less important ones. In [24] it was
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shown that the gammatone filterbank set of features has superior performance com-

pared to MFCCs for invariant speech applications.

2.4.5 Time Derivatives

One of the major problems with creating phoneme recognizers is modeling the time

dependencies of adjacent frames, phonemes, and words. As we will see the use of

HMM addresses this issue and allows for a powerful model of the phonemes connec-

tion to the previous phoneme. Another, generally supplementary, common step in

ASR systems is to attempt to incorporate information about the time transitions

between frames into the feature extraction stage. This is done by calculating the

time derivative of the feature set and sometimes the second-order time derivative and

attaching these derivatives on to our general feature set [17].

For time-frequency analysis methods these derivatives can be particularly impor-

tant as was demonstrated in an experiment discussed in [17]. Using isolated syllables

truncated at initial and final endpoints, it was shown that the portion of the utter-

ance, where spectral variation was locally maximum, contained the most phonetic

information in the syllable.

In ASR applications we will generally estimate the time derivative information

using a polynomial approximation. For a sequence of frames C(n), we approximate

the signal as h1 + h2n + h3n
2. We choose a window of 2M frames so that n =

−M,−M +1, ...,M . The fitting error becomes
∑M
−M (C(n)− (h1 + h2n+ h3n

2))2. It

can be shown that the following values minimize this error

h2 =

∑M
n=−M nC(n)

Tm
(2.7)

h3 =
Tm
∑M

n=−M C(n)− (2M + 1)
∑M

n=−M n2C(n)

T 2
m − (2M + 1)

∑M
n=−M n4

(2.8)
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h1 =
1

2M + 1

[
M∑

n=−M

C(n)− h3Tm

]
(2.9)

Where Tm is given by,

Tm =
M∑

n=−M

n2 (2.10)

The polynomial approximation to the second derivative can be obtained similarly

as described in [17]. These time derivatives, typically refered to as ”delta”(∆) and

”delta delta”(∆∆), are a standard feature used to supplement MFCCs and other

features in many works [9, 13,15,18,25,26].

2.5 Recognition

In this section we will discuss various methods of recognition that are used in typical

speech recognition systems. First hidden Markov models (HMMs) will be discussed

and their limitations will be outlined. Neural networks in general and in the context

of speech recognition will be discussed in a separate section.

The most popular method used in speech recognition is that of hidden Markov

models. This method, although imposing some of the necessary temporal constraints

on the acoustic model, suffers several well known weaknesses which will be discussed.

One key weakness is the HMM’s discriminating ability. The HMM is generally trained

with the maximum likelihood (ML) criterion which maximizes the likelihood that a

given observation sequence was generated by a given model. During training this

does not propogate any information to competing models about what observations

were not generated by the competing model.

For this and other reasons, methods which have shown strong discriminative

ability and have proven successful in other fields have become popular. Primarly re-

cent research has focused on neural network based methods although support vector
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machine (SVM) and kernel based methods are also being explored [27,28]. Newer ap-

proaches generally combine neural networks and HMMs or HMMs and SVMs to make

use of the HMMs sequential modeling while obtaining better discriminating ability.

In addition, some recent works in recurrent neural networks(RNNs) have been able

to accomplish state of the art results in phoneme recognition without incorporating

HMMs [25].

Figure 2.10 Diagram of a continous speech recognition system from [3]

Figure 2.10 shows a diagram of a typical speech recognizer. After the input

has been processed with the signal analysis and feature space reduction methods

described, the next phase can be grouped into a recognizer. The recognizer has

been trained prior to the system’s use to categorize the input features and perform

segmentation. Unlike a classification problem, a continous speech recognizer is more

complicated since it needs to segment each sound and determine the most likely

sequence.
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An acoustic model will usually model speech as a sequence of states. The states

can vary in granularity. For example, a state for each word will have the largest granu-

larity and would give the greatest word recognition accuracy. However, the number of

examples of each word available will be too small for effective training. On the other

end of the granularity scale a monophone model will model a sequence of phonemes.

The acoustic analysis will yield scores for each frame of speech. Within HMMs, these

scores generally represent emission probabilities, referring to the likelihood that the

current state generated the current frame. The time alignment processing then iden-

tifies a sequence of the most likely states that produce a word in the vocabulary.

For HMMs this time alignment is generally accomplished with the Viterbi algorithm.

The time alignment generates a segmentation on the sentence, which can be used

during training to train the appropriate acoustic model on corresponding segmented

utterances [3].

2.5.1 Hidden Markov Models

Our goal in the recognition stage is generally to determine which category of phoneme,

syllable, or word the current frame or observation falls under. We can base the

decision purely on properties of the speech within the current time window, but this

would preclude us from using the intrinsic temporal properties in speech as well as

sequential constrains. Speech utterances have a strong sequential structure. Sub-

word utterances tend to come in specified sequences. Similarly words tend to follow

sequential constraints defined by a grammar. In order to recognize speech we must

construct an adequate model of these sequential constraints.

A hidden Markov model is a statistical model which is heavily used in speech

recognition due to its abilitiy to do just this, model the temporal transitions between

states. To understand Markov models, consider a system in which we use all previous
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observations and the current observation to make our decision on the classification

category. Such a system would be impractical. For many applications, in particular

speech, the most recent observations are much more important than previous obser-

vations. A model which assumes dependencies only on the most recent observations is

called a Markov model [29]. In practice, we generally use a first-order Markov model

in which the current observation is dependent only on the previous observation. One

can represent this as a state model with edges representing transition probabilities

between states.

Within a standard Markov model each variable has a probability of transition-

ing to the next state. The basic Markov model has each state “corresponding to a

deterministically observable event” [17]. This model alone is not good enough to be

applicable to many problems since we often do not know what state we are in given

an observation. Hidden Markov models serve to resolve this discrepancy.

Figure 2.11 Model of HMM from [7]

In a hidden Markov model (HMM) there exists another set of parameters, which

generally characterize the actual probability of being in a specific state. The HMM
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model consists of transition variables also called, transition probabilities, and latent

variables also called emission probabilities. A diagram of an HMM is shown in Figure

2.11. Here we have the observed feature sequence ot generated from the probabilities

bj(ot) or bjt for short, which are the emission probabilities, and also the transition

probabilities denoted by aij. As shown in the diagram, if we are at state 1 there is a

certain probability of transitioning to the next state, denoted by a1j.

Mathematically an HMM model, λ, is given by λ = (A,B, π). Here A is the set

of all aij, the probabilities of transitioning from state i to state j. B is the set of all

bjt the probability given state j of generating the observation at time t. Finally π,

the initial state distribution, is the set of all πi which are the probabilities that the

initial state is i. It is interesting to note that the HMM is a generative model. Given

the parameters of λ, a sequence of utterances can be generated.

Since the HMM is able to impose temporal constraints on a model it is common to

construct hierarchial models from smaller models after determining the parameters of

the smaller models. As will be discussed, this is critical to large vocabulary continous

speech recognition. As shown in Figure 2.12 we can construct phoneme level models

trained for each phoneme which can be concatenated to form word level models and

sentence level models [3].

A simple example of how the HMM works can be obtained by discussing isolated-

word speech recognizers. In this task we know that the input is a word and do not

concern ourselves with the boundaries of the classification categories. We attempt

to build an HMM for each individual word. Let us assume we have an HMM model

constructed for each of M words in the vocabulary. The algorithm that can be used to

obtain the HMM parameters will be discussed later. Given a sequence of observations

O = (o1, o2, ..., oT ) and a vocabulary w1, ..., wm the problem of finding the most likely
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Figure 2.12 Hierarchial model of HMMs [3]

word, wml then reduces to finding:

wml = argmax
t

P (wt|O) (2.11)

which cannot be estimated directly. By applying Baye’s rule we obtain:

P (wi|O) =
P (O|wi)P (wi)

P (O)
(2.12)

Thus we can reduce the problem to maximizing P (O|wi). Assuming each word cor-

responds to an HMM model we attempt to find for each word model λ1, .., λM the

P (O|λi). Once this set of probabilities is estimated we can determine the most likely

word that generated the sequence.

Here is how P (O|λ) is calculated. Let’s assume a fixed state sequence q represent-

ing one of the possible state sequences of length T . HMMs assume the observations

are independent, thus we can say the probability of the observation given the model

and the sequence q is related to the individual observations at time t by:

P (O|q, λ) =
T∏
t=1

P (ot|qt, λ) (2.13)
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P (O|q, λ) = bq1(o1)bq2(o2)...bqt(ot) (2.14)

The probability of this state sequence is given by:

P (q|λ) = πq1aq1q2aq2q3 ...aqT−1qt (2.15)

With these results we can obtain the joint distribution:

P (O, q|λ) = P (O|q, λ)P (q|λ) (2.16)

Summing over all possible q we obtain:

P (O|λ) =
∑

all possible q

P (O|q, λ)P (q|λ) =
∑

all possible q

πq1bq1(o1)aq1q2 ...aqT−1qtbqt(ot)

(2.17)

[17] gives an intuitive explanation of the above equation. For each possible state q,

initially (at time t = 1) we are in state q1 with probability πq1 and generate the symbol

o1 with probability bq1(o1). The clock moves to t + 1 and we make the transition to

state q2 from q1 with probability aq1q2 and generate symbol o2 with probability bq2(o2).

The process continues in this manner until we reach the last state T.

Unfortunately this direct computation is infeasible due to the large number of

calculations involved. Fortunately there exists a recursive algorithm for computing

this called the forward procedure. This procedure defines a forward variable:

αt(i) = P (o1, o2...ot, qt = i|λ) (2.18)

This gives the probabilitiy of observing the partial sequence o1, o2...ot and ending up

in state i at time t. This is related to our desired probability by:

P (O|λ) =
N∑
i=1

αT (i) (2.19)

The forward algorithm computes the forward variable at T using a recursive relation:

α1(i) = πibi(o1)αt+1(i) =

[
N∑
i=1

αt(i)aij

]
bj(ot+1) (2.20)
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Thus we have a method to obtain the value P (O|λ) [17].

We have learned how one can decide which model best fits each word in an

isolated word recognition problem. But, how do we determine the parameters of the

model in the first place? We will briefly discuss the most popular algorithm used for

training. To estimate the model parameters for an HMM, λ = (π,A,B) the most

commonly used technique is called Baum-Welch reestimation (which is also known as

the forward-backward algorithm). This is an iterative method which actually makes

use of the forward algorithm along with a sister calculation, the backward algorithm

as part of its estimation proces. It is a particular case of a generalized expectation-

maximization (GEM) algorithm. This method can compute maximum likelihood

estimates and posterior mode estimates for the parameters (transition and emission

probabilities) of an HMM, when given only emissions as training data [3,29]. Baum-

Welch reestimation, starts with an intial guess for the model parameters. At each

iteration we obtain the maximum likelihood (ML) estimate for the model using the

efficient backward and forward procedures. We can then use these new estimates for

the model parameters in the next iteration. The procedure continues until a stoping

criterion is met. For continous speech, the method for isolated word recognition

described above is not sufficient because it is not practical to have separate HMM

models for each sentence. Another key algorithm with regards to the training of

HMMs is used for decoding in the continous case; this is the Viterbi algorithm. This

algorithm deals with the problem of finding the best state sequence q given a model

λ that best explains an observation sequence O. For isolated word recognition this

algorithm can be used to segment each of the word training sequences into states,

then study the properties of the spectral vectors that lead to the observations in

each state. This allows us to make refinements to the model before it is used. Since

Viterbi allows us to find a best sequence we can use this algorithm for the recognition
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phase in continous speech recognizers. The states in the models are given more

physical significance, allowing them to belong to particular words or phonemes. The

Viterbi algorithm then attempts to find the best sequence of states in the model.

The Viterbi algorithm attempts to find the maximum likelihood state sequence. We

define a likelihood variable, φt(i), denoting the likelihood of observing o1, o2...ot and

being in state i at time t:

φt+1(i) = max
i
{φi(t)aij}bj(ot+1) (2.21)

The likelihood is computed in a similar fashion to the forward algorithm except that

the summation of previous states is replaced by taking the maximum state. The value

is initialized with:

φ1(1) = 1 (2.22)

φj(1) = a1jbj(o1) (2.23)

The maximum likelihood then becomes:

φN(T ) = max
i
{φi(T )aiN} (2.24)

where T is the last time step and N is the final state. This algorithm is often visualized

as finding the best path through a matrix were the vertical dimension represents states

of the HMM and the horizontal dimension represents the frames of speech [7].

For large vocabulary continuous speech recognition the HMM will generally be

based on phonemes, because the large number of words and their different pronun-

ciations make it highly impractical to train and compare against that many HMM

models. For this reason most large-vocabulary continous speech recognition is done

at the phoneme level [3].

HMMs have several weaknesses that need to be addressed in order to improve

continous automated speech recognition. One problem is, given that we have arrived
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at a particular state within an HMM, the likelihood that an HMM will generate

a certain observation is dependent only on the current state, which is not a valid

assumption for speech where the distribution is strongly affected by recent history.

Another closely related problem is the independence assumption. HMMs assume that

there is no correlation between adjacent input frames, which is false. We have seen

one way to deal with this by incorporating time derivatives into the frame so that

each state will get a better temporal context.

Models for the HMM states can be discrete or continous. The most commonly

used model of continous Gaussian mixtures is not optimal. It assumes a particular

form of the distribution. This problem is one of the inspirations for the frame based

hybrid HMM and neural network systems. Here neural networks are trained to gen-

erate the emission probabilities without making any a priori assumptions about the

distribution of the data (unlike a Gaussian mixture model).

Finally, as discussed earlier, the maximum likelihood traing criterion leads to poor

discrimination between acoustic models. As we will see in neural network training

for each example the network not only learns that example A belongs to class X, but

also that example A does not belong to any of the other classes. An alternate training

criterion for HMMs has been explored called the maximum mutual information (MMI)

criterion; however this has been difficult to implement properly and greatly increases

complexity [3].

2.5.2 Scaling of Speech Recognition

It may become confusing to the reader when we discuss the different types of phoneme,

word, syllable recognition approaches. Some clarification is needed in this area. As

mentioned in the previous section word-level recognition in which we directly attempt

to classify the speech into categories of words becomes impractical for large number
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of words. For example, the average word has many different pronunciations; if we

have a vocabulary of even 1000 words, we will need 1000 HMMs or 1000 output states

in a neural network. This becomes computationally infeasible very quickly, especially

given the amount of training data required for each different pronunciation of the

word.

In order to remedy this, phoneme and syllable recognition are studied. Recogni-

tion at this level can then be combined into efficient word and sentence recognizers.

The problem with phoneme level recognition is that phonemes are very sensitive

to context. As mentioned previously the phoneme is only a layover of the most

basic speech utterance, the phone. The phones suffer from the same problem as

words, there are too many possible phones. However by combining many phones into

phonemes which are indistinguishable to the listener, we introduce a great deal of

context-variability. Syllables do not suffer from such a problem; however they are not

widely used because there is simply too many of them for practical systems [17]. Thus

most continous speech recognizers work at the phoneme level. It is also common to

construct biphone and triphone models consisting of combinations of two and three

phones [3].

There are several ways to get from phonemes to actual word and sentence recog-

nition. A brief example using HMMs is to create HMMs for each phoneme, a standard

set of English phonemes contains 39 different categories. These models can then be

combined into words using a lexicon of phoneme to word transcriptions. Such a lexi-

con will have ambiguity since one word can have different pronunciations. To resolve

this, language modeling techniques can then be used to better decide which word best

fits the current sentence [17].

The field of research in speech recognition is quite varied. The problem being

attacked from various scales. Due to this, research in discriminative techniques often
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begins with a simpler problem then research dealing with language models and how

best to incorporate them into large vocabulary continous speech systems. Since there

are various techniques which use the phoneme information to generate the actual

sentences of the speech recognizer output, many authors focus on the task of phoneme

classification and phoneme recognition in order to isolate their methods and make

their performance metrics simple and more objective [9, 13, 17].

In the phoneme classification task we focus on discriminating between different

phonemes. Here the segmentation of the utterances is known and they are presented

to a classifier. In the more sophisticated task of phoneme recognition a sentence is

presented and the sequence of phonemes is output by the system. In classification the

metric is quite clear to construct; namely, divide the number of correct classifications

by the number of total utterances given to get a classification score. In the recognition

task the score generally contains a penalty for insertions and deletions of phonemes

besides the simple penalty of whether the phoneme was classified correctly.

Since this work focuses on improving the invariance in the recognition stage, we

will also simplify our task to that of phoneme classification. Extensions into phoneme

recognition will be discussed in section 4.2.

2.5.3 Neural Networks

Neural networks are biologically inspired classifiers. They are heavily used for many

machine learning applications due to their abilitiy to learn non-linear functions. They

contain potentially large numbers of simple processing units, similar to neurons in

the brain. All the units operate simultaneously, allowing for algorithms to be imple-

mented efficiently on specialized hardware supporting parallel processing [3, 30]. In

recent years there has been a great deal of research into applying neural networks for

speech recognition applications. Although hidden Markov models are very popular
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and perform well by incorporating the intrinsic time dependencies of speech into the

model, their ability to actually distinguish categories based on the current observation

is lacking. On the other hand, neural networks have a strong discriminating ability

but traditionally lack the ability to model temporal transitions. For this reason neural

networks are often used in combination with HMM models, or extra features are built

into the networks to help them incorporate time information such as in the time-delay

neural network (TDNN) structure and the recurrent neural network (RNN) [8].

There are several basic features that are shared by all types of neural networks.

These features are:

• A set of processing units generally refered to as nodes

• A set of connections, or links, between these processing units

• A computing procedure performed by each node

• A training procedure

The nodes in a network are generally labeled as input, hidden, or output. Input nodes

receive the input data, hidden nodes internally transform the data, and output nodes

represent the decisions made by the network. At each moment in time, each node

computes a function of its local input, and broadcasts the results to its neighboring

nodes in the succeeding layer [3].

2.5.3.1 Frame, Segment, and Word-Level Training

Speech recognition systems using neural networks can often be categorized by the unit

of speech that is used for training. Frame-level training refers to training on a frame

by frame basis. An example of this is an HMM and neural network hybrid system

in which the neural network is trained to estimate the emission probability used for
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the HMM. The problem suffered by such systems is the lack of context information.

Often a phoneme cannot be categorized by a single frame of short duration [3].

Alternatively segment-level training, which will be the focus of our work here,

receives input from an entire segment of speech. Generally this is the whole duration

of a phoneme, but can also be a syllable. This allows much more information about

the correlation that exists among all the frames to be presented to the network.

The difficulty in this method is that the speech must first be segmented before it is

evaluated by the neural network. An approach which incorporated a segment-level

training in a full continous speech recognition system was demonstrated in [31]. Here

an HMM recognizer was used to produce segmented versions of the most likely N

sentences, where N was chosen as 20. A segment trained fully connected network

was then used on each segment to produce a new set of likelihood scores for each

sentence. This was combined with the HMM scores and used to decided on the most

appropriate sentence.

In word-level training we segment the input speech into entire words to obtain

the maximum context for the neural network input. Unfortunately the problem with

this method is the word cannot be easily modeled with one output state. For large-

vocabulary systems the number of output words would grow to unreasonable propor-

tions. As has been discussed in the HMM section, training would require far more

examples since the number of example words in a given training set is far smaller

then the number of phoneme examples.

2.5.3.2 Multi-Layer Perceptrons

The standard neural network called, the multilayer perceptron, consists of a feedfor-

ward network of computing units. A diagram of a neural network is shown in Figure

2.13. Each connection has a weight value which is multiplied by the input to the
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node. The weighted sum of inputs from all the connections is then passed through

an activation function. Mathematically we can think of the output of a node in the

network, ai as:

ai = g(ini) = g

(
n∑
j=0

Wj,iaj

)
(2.25)

where Wj,i is the weight of the link between node j to node i. The function, g, is

refered to as the activation function. The purpose of the activation function is to

allow the network to model non-linearity between input and output. It has been

shown that with a single hidden layer, it is possible for a neural network to represent

any continuous function of its inputs, given a sufficiently large amount of hidden

nodes [30]. One popular choice for the activation function is a sigmoid function.

Sigmoids are functions that asymptote at some finite value as the input approaches

positive or negative infinity. The most commmonly used sigmoids are the hyperbolic

tangent and the standard logistic function [32]. In his work [32], Lecun recommends

the use of the hyperbolic tangent to improve speed of training with backpropogation.

The advantage of this is that a sigmoid that is symmetric about the origin is more

likely to produce outputs that are on average close to zero. This is optimal for the

gradient descent algorithm which will be discussed later.

The simplest way to apply a neural network to speech recognition is to present

a sequence of acoustic feature vectors at the input to the neural network and detect

the most probable speech unit at the output [8]. An example of this taken from [8]

for small vocabulary isolated word recognition is shown in Figure 2.13. The desired

outputs here are 1 for the nodes representing the correct speech units, and 0 for

the incorrect ones. In this way, not only is the correct output reinforced, the wrong

outputs can be weakend. Because the wrong outputs are weakened for each example,

the multilayer perceptron becomes capable of better discrimination than the hidden

Markov model [8]. The same approach can be applied to phoneme recognition for
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more general automatic speech recognition systems.

Figure 2.13 Sequence of M acoustic feature vectors being applied directly to a
fully connected neural network [8]

The problem with this network structure is that it does not incorporate any

temporal information into the network. Although in theory the network could learn all

the temporal information that is needed if the window M is large enough, the reality

is that gradient descent training, which will be discussed does not guarantee this

knowledge will be explicitly incorporated. Structuring the network to force temporal

relationships between nodes is a more suitable strategy for incorporating temporal

information. As we shall see the TDNN provides for an efficient way to incorporate

temporal information. Other approaches are also possible such as recurrent neural

networks which contain feedback connections, however the theory behind training

these networks is still in early stages.
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2.5.3.3 Time-Delay Neural Networks

In order to improve the ability of a neural network to deal with the temporal relation-

ships between acoustic vectors, the time-delay neural network (TDNN) was proposed

by Waibel [9]. In the time delay neural network each layer gets as input the current

input as well as delayed inputs which are then used to calculate the output. One way

of looking at this is shown in Figure 2.14 [9]. Here the input features denoted by U1

through Uj are delayed in time and weighted essentially as a secondary sets of feature

vectors.

Figure 2.14 The inputs to a node in a TDNN. Here D1, ..., DN denote delayes
in time of the input features U1, ..., Uj [9]

An important aspect that the TDNN addresses is the proper representation of

the temporal relationship between acoustic events. Another key aspect is that the
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network provides a level of invariance under translation in time. For example the

specific movement of a formant (peak frequency in a speech pattern) is important

for determining a voiced stop (a stopped consonant made with tone from the larynx

while the mouth organs are closed at some point), but it’s irrelevant if this event

occurs a little sooner or later in the course of time [9]. This translation invariance in

the time domain is important as it removes the need for a precise segmentation used

to align the input pattern. Even if the current input into the neural network does

not completely contain an entire phoneme, if the features of relevance are present at

any time within the input stream and the confidence is high enough in the category,

we will be able to recognize the existence of a phoneme. This alignment task is

otherwise difficult in a continous speech recognition system such as one that uses a

basic neural network; wherein it is unclear without alignment the borders between

the next phoneme. In [26] it was shown that TDNNs can perform significantly better

on misaligned phonemes then standard fully connected multilayer perceptrons.

Figure 2.15 shows Waibel’s TDNN implementation. Here the feature vectors,

MFCCs, are of length 16, with a total of 15 frames presented to the network. Here

each frame is 10ms and the length of the delay of 3 frames is chosen from studies

which show that 30ms is sufficient to represent low level acoustic phonetic events for

stop consonant recognition [9]. There are 8 nodes in the hidden layer. The next

layer uses a time window of 5 frames. The intent in this structure is to have the

first hidden-layer learn the the short-time acoustic properties and the second layer

learn the long term acoustic properties. The final hidden layer is referred to as an

integration layer. This sums the “evidence” across time for the phoneme. This layer

has a fixed weight applied to the sum of each row and connected to an output node

with an activation function. It is worth noting that another interpertation of this

network is that of 8 convolutional windows of length 16× 3 applied to the input with
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Figure 2.15 Waibel’s Time-Delay Neural Network structure [9]

each convolutional windows output on a separate row in the second layer. The next

layer can then also be interperted as a set of convolutions. This will help us interpert

the TDNN within the context of a convolutional neural network.

Similar structures have been widely used in speech recognition since the introduc-

tion of TDNNs [14,15,18]. The most notable work for our purposes comes from [15],

were a structure called block windowed neural networks (BWNN) is described. In

this structure a window similar to the TDNN window is applied across time, the

difference being that the window does not span the full length of the input in the

frequency domain, thus the window is convolved in time and frequency. In this early

work it was theorized that this structure would allow for the learning of global fea-
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tures and precise local features about both time and frequency data. This structure

is essentially a convolutional neural network without subsampling layers and without

the use of multiple convolution kernels and feature maps. Furthermore, the features

used were MFCCs which, as described earlier, are not as well suited for visual rep-

resentation of the speech as gammatone filterbank or the STFT. This work reported

improved classificaiton acccuracy for various speech recognition tasks, however this

type of network was not used in later work and uses of the TDNN networks have

generally not involved windowing in the frequency domain [3, 18]. In this work, we

attempt to improve upon this idea by applying all the features of a CNN, particularly

the subsampling layer and multiple feature maps, in order to improve the invari-

ance. Furthermore we attempt to exploit the visually distinctive structure obtained

by gammatone-filter bank models of speech to allow the CNN to better learn local

correlations.

2.5.3.4 Convolutional Neural Networks

Convolutional neural networks (CNNs), designed for image recognition, are special-

ized types of neural networks which attempt to make use of local structures of an

input image. Convolutional neural networks attempt to mimic the function of the

visual cortex. In [33], Hubel and Wiesel found that cells in the cat’s visual cortex are

sensitive to small regions of the input image and are repeated so as to cover the entire

visual field. These regions are generally referred to as receptive fields. Several models

for image recognition have been created based on these findings; in particular, the

work of Yann Lecun studied convolutional neural networks as applied to document

recognition [34]. Lecun described convolutional neural networks as an attempt to

eliminate the need for feature extraction from images [35].

A key problem with fully connected networks is that they ignore the spatial
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structure of the input image. The pixels of the input image can be presented in any

order without affecting the outcome of the training [35]. In the case of images and

spectral representations of speech there exists a local structure. Adjacent pixels in an

image as well as adjacent values of a spectral representation have a high correlation.

Convolutional networks attempt to force the extraction of these local features by

restricting the receptive fields of different hidden nodes to be localized.

Another closely related feature of convolutional neural networks, and the one

which is of particular importance in this work, is their invariance properties. A

standard fully connected network lacks invariance with respect to translation and

distortion of the inputs. Since each node in the hidden layer receives a full connection

from the input, it is difficult to account for possible spatial shifts, although in principal

a large enough network can learn these variations. This would likely require a large

number of training examples to allow the network to observe all possible variations.

In a convolutional neural network, a degree of shift invariance is obtained due to

several architectural properties.

The convolutional neural network achieves shift and distortion invariance through

the use of local receptive fields, shared weights, and spatio-temporal subsampling.

The local receptive field allows the recognition to focus on localized structures ver-

sus learning only relationships between global structures. Local structures aren’t

restricted in their position within the input space. The shared weights allow for lo-

calized structures to exist in different parts of the image and still trigger neurons

to fire in the next layer. Finally, the subsampling of hidden layers improves upon

this invariance by further decreasing the resolution of the inputs to the next layer by

averaging the result of adjacent nodes from the previous layer [34].

Figure 2.16 shows a modified version of the LeNet-5 network structure [34]. At

the input layer, a kernel, which is a fixed size block of 9 × 3 weights, is applied to
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each point in the image. This is analogous to applying a 2-D digital filter to an

image via a convolution operation, thus the name CNN. In theory, given appropriate

training, a convolution kernel can become a well-known image filter such as an edge

detection filter. For each kernel applied to the input image there exists a feature map

which is the output of the convolution. In subsequent layers, feature maps can be

connected in various ways to other feature maps. For example, two distinct feature

maps in the first convolutional layer (C1) can be connected to the same feature map

in the next layer; this entails applying 2 different kernels at localized points and then

combining them at the relevent hidden node in the feature map of C2. A common

way to describe this is through the use of a connection table, which is a table of size

N ×M of binary values, where N is the number of input feature maps and M is the

number of output feature maps. The (i, j) entry indicates the presence or absence

of a connection between the jth feature map in the higher layer with the ith feature

map in the lower layer.

Figure 2.16 Diagram of a modified LeNet-5 structure

In this context, we can now formulate a TDNN as a subclass of CNNs. The

TDNN can be interperted as a CNN without subsampling layers and convolution

kernels spanning the full length of the input in the frequency dimension. Subsequent

layers can be interperted as fully connected feature maps.
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2.5.3.5 Limitations of Neural Networks

Several difficulties are present in this approach versus the HMM approach. One of

the large difficulties is that within the hidden Markov model the time alignment

can be performed automatically in the recognition phase by the viterbi algorithm.

The second difficulty in this approach is time variability, the same word or phoneme

from different speakers has different durations. Since the neural network has a fixed

number of inputs, either some acoustic vectors have to be cut if the word/phoneme

is too long or set to arbitrary values if it is too short [8].

As in past work [9], we will attempt to eliminate the alignment problem from

our experiments by restricting ourselves to the phoneme classification task. Within

this task it is assumed that the phonemes have been segmented and all that must be

found is the category within which to classify the phoneme. The goal is to demonstrate

the ability of the convolutional neural network to discriminate between phonemes of

different speakers. These networks can then be the basis of larger systems which

perform the segmentation task as in [31,36].

The time variability problem has been addressed by various researchers in several

ways. Within the original TDNN structure the input size of the segment is fixed to

150ms. This can make recognition difficult for phonemes whose lengths are longer.

In a follow up to the seminal paper [9], Waibel’s [37] explored combinations of net-

works trained for different lengths with improved results for categories of different

lengths. In her dissertation [18], Hou describes a method of combining a knowl-

edge based categorization system which would first detect the general category of

phoneme(fricative, consonant, vowel,etc) giving a much better idea of the phoneme

length. This phoneme would then be run through a neural network classifier made

for that particular category.
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2.5.3.6 Training algorithms

Gradient Descent Back Propogation

Gradient descent is a classical optimization algorithm. Given a set of parameters,

W , we seek to optimize a cost function, E(W ). Here W can represent the weight

vector of a neural network. Gradient descent works by taking a step in the negative

direction of the gradient of the function at the current point. More formally, at each

time step we find a W that better minimizes E(W ) by computing ∂E(W )
∂W

and then

updating the W vector to,

W (t+ 1) = W (t)− µ∂E(W (t))

∂W (t)
(2.26)

where µ is the stepping size, also known as the learning rate, and t denotes the

iteration.

In order to implement this update procedure through multiple layers of a neural

network, we need to approximate the gradient of the error, ∂E(W )
∂W

, with respect to

all the weight vectors. This is easy to do for the weights connected directly to out-

put nodes; however computing the components of the error with respect to weights

which terminate at hidden nodes requires a procedure known as backpropagation.

Backpropogation takes advantage of the chain rule by the following formulation:

∂Ep
∂Wn

=
∂F

∂W
(Wn, Xn−1)

∂Ep
∂Xn

(2.27)

∂Ep
∂Xn−1

=
∂F

∂X
(Wn, Xn−1)

∂Ep
∂Xn

(2.28)

Where Xn, is the output at layer n , Wn is the set of parameters used in layer n. The

function Fn(Wn, Xn−1) is applied to the input Xn−1 to produce Xn [32]. Solving this

recursively we can obtain the desired ∂E(W (t))
∂W (t)

.

Training of convolutional kernels can be done by computing the error as if each

application of the kernel was a separate set of weights. The errors for each application
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of the kernel can then be summed as in [34] or averaged as in [9] to create the overall

weight update for the shared weights.

Batch Training Versus Stochastic Training

Equation 2.26 gives us a procedure for updating the weights once we have computed

the gradient with backpropogation. There are two competing ways to use this gradient

descent procedure. Batch training involves computing the error on the entire set of

training examples, taking the average, and then performing the update procedure.

In [9] and the more recent [18], a batch training approach was used to train a TDNN.

The networks were trained on increasingly large subsets of the data to increase the

speed of convergence.

An alternate approach popularized by LeCun [29, 32] trains on the error from

each example as it presented to the network. This is known as stochastic gradient

descent. Stochastic training is often preferred because it is usually much faster than

batch training and often results in better solutions [32]. The problem with gradient

descent lies in the fact that it is only guaranteed to find a local minimum. Stochastic

descent introduces a great deal of noise into the training by using the current example

as an estimate for the overall error. This noise can actually be advantageous, allowing

the descent to venture out of local minimums. There are however ways of improving

batch training as discussed in [32]. In general stochastic descent has been the more

popular method because it is simply much faster.

Adapting The Learning Rate

In order to improve convergence speed it is common to choose separate learning

rates for each weight, unlike the fixed µ in Equation 2.26. Some methods exist for

determining this step size in each direction of the weight vector as well as continously

adapting this learning rate as outlined in [32,34]. These methods can greatly increase
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the rate of convergence. A common way to adapt the learning rate, εk, for a specific

weight, wk, of the weight vector W is by use of the relation,

εk =
η

µ+ hkk
(2.29)

Here µ and η are hand picked parameters. hkk is an estimate of the second derivative

of the the error, E, with respect to the weight vector, W . In [32], several approx-

imations about hkk were made to develop an efficient algorithm for computing the

parameter during training. The result was a procedure similar to that of backpro-

pogating to compute the first-order derivative of the error. This procedure is referred

to as stochastic diagonal levenberg-marquardt.

2.6 Invariant Speech Recognition

Typical early HMM systems have shown that speaker independent systems typically

make 2-3 times as many errors as speaker dependent systems. A notable work by

Waibel showed that improvement in speaker independent systems can be obtained by

training several speaker-dependent TDNNs and combining them [3].

One major source of interspeaker variability in HMM based continous speech

systems is the vocal tract length (VTL). The VTL can vary from approximately

13cm for females to over 18cm for males. The formant frequencies (spectral peaks)

can vary by as much as 25% between speakers [12]. In [13] invariant transformations

on gammatone filterbank based feature vectors were shown to significantly improve

recognition in mixed training and testing conditions. Early results in [15] showed that

networks with shared weights along the frequency dimension can improve recognition

in mixed training and testing conditions. Our goal in this work will be to explore

improvements in speaker independent recognition which can be achieved through the

use of the CNNs.



Chapter 3

Experiments and Results

3.1 Overview

Experiments have been conducted to study convolutional neural networks for speech

recognition. The experiments have been performed using the TIMIT corpus. The

phoneme classification task was chosen and results of the CNNs have been compared

to the TDNN and a fully connected neural network (FINN). For all experiments the

“Eblearn: Energy Based Learning” C++ library has been used to train and test the

network. MATLAB has been used to perform the feature extraction.

3.2 TIMIT Corpus and Feature Extraction

The TIMIT corpus is a database of phonetically and lexically transcribed speech from

American English speakers of different sexes and dialects. The corpus consists of a

total of 6300 spoken sentences; 10 sentences are spoken by 630 different speakers

from 8 major dialect regions of the United States. The TIMIT corpus has a variety

of sentences selected by researchers at Texas Instruments(TI), MIT, and SRI. The

44
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TIMIT documentation recommends a separation of test and training data [38]. The

test set consists of 168 speakers of 1680 sentences and the training set consists of 462

speakers of 4620 sentences.

A subset of the sentences in the test and training set are referred to as “SA”

sentences and are read by identical speakers in both the test and training sets; these

have been designed to expose the various dialects. Using the same speaker for the

test and training set would bias the results for speaker independent experiments. For

this reason we have discarded the “SA” sentences as done in other works [18,25].

The TIMIT database consists of wav files with speech sampled at 16kHz. For

each sentence, a phonetically hand-labelled description gives the start and end time for

each phoneme in the sentence. The corpus consists of a set of 61 different phonemes.

Many of these phonemes are similar with regards to their sounds; confusion amongst

them is not typically counted as an error. Typically, the 61 phoneme categories are

folded into 39 phonetic categories [18,25,36]. Table 3.1 shows how the phonemes are

folded. The MATLAB Audio Database Toolbox (ADT) is used to load and parse the

description of the data into MATLAB for further analysis.

Phonemes are excised from each sentence in order to allow for training and test-

ing. Extracting phonemes from sentences poses a general problem. Since phoneme

length is variable, but the basic neural networks being tested require a fixed length

input, we are faced with the problem of how to deal with this variability. For the

purposes of demonstrating the abilities of CNNs, a single length was chosen to char-

acterize all phonemes. In section 4.2 we describe some ideas for better dealing with

this variability in more sophisticated systems.

In [9], a length of 150ms is used, however this work was conducted only on a

subset of consonants. In [39], it is shown that a 150ms duration is superior to using

a 200ms duration network on a subset of the TIMIT corpus consisting of vowels.
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Phoneme Category TIMIT phonemes folded into category Percent of Database

1 aa aa,ao 3.46

2 ae ae 2.30

3 ah ah,ax,ax-h 3.63

4 aw aw 0.42

5 ay ay 1.38

6 b b 1.26

7 ch ch 0.47

8 d d 2.05

9 dh dh 1.63

10 dx dx 1.56

11 eh eh 2.22

12 er er,axr 3.14

13 ey ey 1.32

14 f f 1.28

15 g g 1.16

16 hh hh,hv 1.22

17 ih ih,ix 7.89

18 iy iy 4.01

19 jh jh 0.70

20 k k 2.81

21 l l,el 3.89

22 m m,em 2.32

23 n n,en 5.05

24 ng ng,eng 0.79

25 ow ow 1.23

26 oy oy 0.39

27 p p 1.49

28 r r 3.77

29 s s 4.31

30 sh sh,zh 1.38

31 sil pcl,tcl,kcl,bcl,dcl,gcl,h# , pau, epi 20.68

32 t th 2.52

33 th th 0.43

34 uh uh 0.31

35 uw uw,ux 1.42

36 v v 1.15

37 w w 1.81

38 y y 0.99

39 z z 2.17

Table 3.1 List of phonetic categories folded based on [25] and percent of TIMIT
training taken by the category
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Waibel speculated that the 200ms duration included extraneous information about

adjacent phonemes causing worse results. On the full database there is a greater

variability in the lengths of the phonemes. To further investigate the use of this

length, distributions of duration for various phonemes were computed. The results

are summarized in Figure 3.1.

Figure 3.1 Bar graph of means and standard deviation of phonetic classes cor-
responding to table 3.1

It can be seen that 150ms is a long enough duration to incorporate the full length

of the majority of phonemes. The phonemes which are slightly longer will still have

a majority of their information contained within the segment. Several phonemes are

generally significantly shorter (less than 70ms) in duration. It is expected that clas-

sification accuracy for these phonemes could be degraded due to extraneous data,
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but with a sufficient amount of examples, the extraneous data presented outside the

boundary of the phoneme should be ignored as noise by the network. A potential

improvement for this problem would be to pad smaller length phonemes, thus re-

moving data beyond the boundary of the phoneme; however this might remove key

temporal information. Another solution is to downsample or upsample the feature

vector sequences to one length in a fashion similar to that discussed in [31]. This will

be discussed in the section 4.2.

The phonemes are extracted from the sentences by finding the middle of the

transcription and then capturing the previous and next 75ms and passing this 150ms

segment to the feature extraction stage. The feature extraction has been performed

using the Gammatone filterbank with ERB scaling as described in section 2.4. This

stage produces 64 features per frame for 14 frames, corresponding to 64 bins of ERB-

scaled filters between 10Hz and 8kHz. The output of the energy in each band is

integrated over 20ms as done in [13], advancing by 10ms for each frame (50% overlap

between frames). The final output is a gammatonegram of size 64 × 14. Figure

3.2 shows four examples of the phoneme category /iy/ processed in the manner

described above. As we can see there are visually distinctive patterns that exist

amongst examples of this category. There are 3 main areas of excitation with respect

to the frequency. These can be seen as the reddest points along the frequency axis.

We can see that these areas can be offset in time as well as less drastically offset in

frequency when comparing different examples of /iy/.

3.3 Computing Tools

Eblearn is a C++ based library aiming at allowing easy development of energy-based

learning models [40]. An energy-based model is one in which an error (or energy)
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Figure 3.2 An example of gammatone filterbank features extracted from different
examples of the phoneme /iy /

score is computed given a training example and a label. The library implements

a very general approach for stochastic gradient descent backpropogation, allowing

modules to be easily added and removed from a network. It implements all the

known tricks to make gradient-based learning fast, including the stochastic diagonal

Levenberg-Marquardt method, which was described earlier.

Eblearn functions through the use of modules which define how information is

forwarded and backpropogated through the modules. Examples of modules available

in Eblearn include a convolutional module, which performs convolution on an input

image, bias modules, which add a bias to the input, nonlinearity modules, which

can apply a sigmoid to the input, as well as a subsampling module which performs
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weighted subsampling on the input. These modules can be combined into layers, most

notably convolutional layers and subsampling layers.

These flexible modules allow the formulation of the CNN, TDNN, and FINN

(standard MLP) structures. A formulation of the TDNN using convolutional and

subsampling layers is shown in Figure 3.3. We interpret the delays as convolutions in

time mapping to various feature maps which correspond to rows in the second layer

as seen in Figure 2.15. The next layer performs a convolution along each feature map

combining the result into C feature maps, where C is the number of outputs. This

layer is a convolutional layer with a full connection table. Finally, the subsampling

layer can be used to perform the integration along time with the use of a window

of size 1 × N , where N is the length of a feature map. Each feature map, of size

1×N , will be multiplied by a single weight. Similarly a regular neural network can

Figure 3.3 The Eblearn construction of the TDNN network. D1 and D2 are the
delays in the first and second layer, respectively. F1 represents the feature maps in
the second layer. C is the number of output classes. N is the length of the feature
maps in the final hidden layer.

be constructed as shown in Figure 3.4 by treating the first layer as a convolutional

layer with a full connection tables to N feature maps, of size 1× 1.

Malcolm Slaney’s toolbox [41] as well as Dan Ellis’ web resource [42] has been

used in MATLAB to compute the ERB-scaled gammatone filter bank output for each

frame of a phoneme. Ellis’ algorithm approximated the gammatone filterbank output
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Figure 3.4 The Eblearn construction of the FINN network. N is the number of
nodes in the first hidden layer.

by “calculating a conventional, fixed-bandwidth spectrogram, then combining the fine

frequency resolution of the FFT-based spectra into the coarser, smoother gammatone

responses via a weighting function.” [42] This was done due to the extremely high

computational complexity of the ERB filter bank routines from Slaney’s toolbox.

This approximation allowed feature extraction to occur 30-40 times faster.

All experiments have been performed on a desktop PC with an Intel Q6600

processor, clocked at 2.4GHz on 4 cores. Each experiment ran on a single core, and

the estimated times which will be presented are intended only as rough estimates

of the relative speed of training each network. There has been much work done

in optimizing the neural network execution and training. The architecture of the

network allows for highly parallizable architectures such as GPGPU and FPGAs to

be used. Recent work has shown highly efficient and fully parametrized execution

and training for CNNs on GPGPUs [43].

3.4 Stop Consonant Classification

In the seminal TDNN paper [9], the Japanese stop consonants /b/, /d/, and /g/

were used to conduct experiments. A further restriction on these consonants was

that they be followed by a vowel. This type of combined consonant-vowel utterance



3.4 Stop Consonant Classification 52

is referred to as a CV utterance. These stop consonants are known for being difficult

to distinguish. In other works the CV consonants /b/, /d/, and /g/ from TIMIT

were used to conduct experiments with TDNNs [18]. We have chosen the full set

of /b/, /d/, and /g/ consonants from TIMIT to perform initial experiments. These

experiments are cruicial for exploring properties of the network structure as well as

the invariance of the networks, due to the length of time needed to train on the

full set of classes. To fully converge on the full TIMIT dataset containing 140,000

phonemes can take up to two weeks on a standard desktop computer for some network

structures. However, this subset contains approximately 5000 training examples, and

the network structure has significantly fewer connections due to the number of nodes

at the output layer; thus convergence can be achieved in as little as 10 minutes in

some cases. The fully interconnected neural network (FINN), time delayed neural

network (TDNN), and the convolutional neural network (CNN) have been created

and trained using Eblearn.

The FINN experiments have been conducted with a single-hidden layer as well

as a two-hidden layer network. First we attempted to determine the effect of adding

extra nodes to the hidden layer. The results can be seen in Table 3.2.

Training Data Test Data Training Time

Hidden Nodes Overall Correct (%) Overall (%) Class Average (%) Epochs Duration

8 94.49 85.45 85.15 2200 50 min.

50 94.97 86.37 85.97 2200 3.4 hrs.

120 94.70 85.73 85.01 2200 7.3 hrs.

Table 3.2 Classifcation rates for single hidden layer fully connected net-
works.

There is a significant improvement when increasing the number of nodes from
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8 to 50; however increasing to 120 nodes yields no further improvement and in fact

seems to yield the same test result as 8 nodes. This might be because overfitting can

occur more easily with a larger number of nodes. Adding more hidden nodes slows

down the training time per epoch but does not improve the rate of convergence as

measured in epochs.

Since the TDNN used by Waibel had multiple hidden layers we attempt to use a

two-hidden layer structure for this fully connected network. The FINN constructed

consists of two hidden layers, the first layer having 50 nodes and the second layer

having 20 nodes. The performance of this network versus the best performing net-

work above is shown in Table 3.3. The two-hidden layer network shows a slight

Training Data Test Data Training Time

Layers Overall Correct (%) Overall (%) Class Average (%) Epochs Duration

1 (50 nodes) 94.97 86.37 85.97 2200 3.4 hrs.

2 (50-20 nodes) 98.27 86.74 85.80 2200 3.6 hrs

Table 3.3 Comparison of one and two hidden layer networks

improvement in performance on the test data and a significant improvement on the

training data.

A TDNN has been constructed to compare to the fully connected network. The

TDNN uses a similar structure to that used in [9]. It is adjusted to fit the size and

time scale of the features we have used, since Waibel used MFCCs. The length of the

kernel in time has been selected as 2 for the first layer. Each frame is 20ms with a 50%

overlap; thus 2 frames would encompass a 30ms period. [9] suggests this is optimal for

learning low-level acoustic information. The second layer consists of a longer window

of 4 frames. The structure has been implemented, as shown in Figure 3.3, as a series

of 2 convolutional layers with kernels of size 64 × 2 mapping to feature maps with
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full connections. The second layer was represented as a convolution of kernels sized

1× 4 mapping to 3 feature maps with a full connection table. The integration layer

is represented with a subsampling layer of size 1× 10 (full length of the final feature

map). We have attempted to use 8 feature maps in the first hidden layer as in [9] as

well as a larger number of 20 feature maps. Table 3.4 summarizes the results.

Feature Maps in Training Data Test Data Training Time

in First Hidden Layer Overall Correct (%) Overall (%) Class Average (%) Epochs Duration

8 84.60 81.33 80.84 180 15 mins

20 84.58 81.7 81.2 180 20 mins

Table 3.4 Results for TDNNs on TIMIT stop consonant classification

The number of feature maps does not appear to greatly affect the result. Further-

more the TDNN performance is actually worse than the FINN performance on this

subset of the data. Since the number of classes here is small, we can speculate that

the FINN might be generalizing better due to the specific placement of the phoneme

in the window. It is possible that the integration layer is reducing the resolution too

much in the time domain. Another possible explanation for the discrepancy between

past reported results is the larger data set used compared to [18] and [9]. As shown

in [43] standard neural networks can perform as well as specialized networks given

enough data which demonstrates the variability of the data. The time invariance

advantage obtained by TDNN might become irrelevant once enough variability is

shown to the rigid FINN. At that point the TDNN could be learning invariance we

do not want, such as translation invariance to other consonants and vowels within

the segment. It must also be noted that training in [18] and [9] were performed using

a staged batch training approach, whereas in this experiment the TDNN is trained

with stochastic gradient descent.
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To test the capability of the convolutional neural network, a LeNet-5 structure

was modified for the task of speech recognition as shown in Figure 2.16. The kernel

size at the input layer has been chosen as 9× 3. The time dimension has been chosen

in a fashion similar to that of the TDNN. The frequency dimensions has been chosen

based on results in [13]. Both subsampling layers have a subsampling window of 2×2

in order to introduce extra invariance to the network.

To compare the effect of the number of feature maps in the hidden layers, the

feature maps in the first convolutional layer (C1) as well as second convolutional layer

(C3) have been varied similarly to the FINN’s hidden layers. A random connection

table is used between the subsampling layer S2 and the convolutional layer C3, as

done in [43]. Table 3.5 shows the results.

Test Training Data Test Data Training Time

Network Energy Overall Correct (%) Overall (%) Class Average (%) Epochs Duration

CNN 6-16-120 0.501 99.75 85.64 85.08 60 49 min.

CNN 20-40-50 0.452 99.73 86.97 86.41 60 2.65 hrs

FINN 0.495 98.35 86.74 85.80 2200 3.6 hrs

TDNN 0.594 84.58 81.7 81.2 180 20 mins

Table 3.5 Results for best scoring FINN, TDNN, and CNN on TIMIT stop
consonant classification. For the CNN the three hyphen separated values
characterize the number of feature maps in C1 and C2 (as shown in Figure
2.16), and the nodes in the full layer. The energy indicates the average mean
squared error across all the output activations in the test set.

As we can see increasing the number of feature maps improves the result on

the testing data. The CNN generaly shows much better convergence on the training

data, achieving near 100% convegence on the training data. The best performing

CNN also obtained significantly lower average mean square error as compared to the

best performing TDNN and FINN. Overall the CNN shows a slight improvement over
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the FINN on the test set. We can make a similar argument as before as to why the

CNN performed only slightly better for this scenario, the training data may represent

enough variation to the FINN to make the CNN’s generalization improvements less

significant.

We can further examine the performance on a per-class basis. As we can see

from Table 3.6 the CNN has a larger performance improvement when averaging the

per class performance. The per-class classification is further broken down in Table

3.6. The TDNN performs significantly worse for all classes. The FINN and CNN have

similar performance in the /b/ and /d/ categories, with the FINN performing slightly

better (about 0.5% and 0.2% improvement). The CNN however performs significantly

better in the /g/ category (improving nearly 3%). This category is nearly half the

size of the other categories. It is possible this class shows greater variability between

the training and test sets, which might be due to a lack of enough training examples

to represent all the variability that can be encountered in the test set. It is possible

for the CNN to perform better in this scenario due to its invariant properties.

Class Correct (%)

Network /b / /d/ /g/

CNN 20-40-50 89.1 86.57 83.63

FINN 89.62 86.81 80.98

TDNN 83.18 80.38 78.93

Table 3.6 Error rates per class for stop consonant recognition. Categories /
b/, /d/, and /g/ have 886, 841, and 452 examples in the test set, respectively
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3.5 Phoneme Classification on Full TIMIT Database

In this section we describe experiments on the full TIMIT corpus. Here all 39 phonetic

categories are used. There are 140,000 example utterances used for the training set

and 50,000 example utterances used for the test set. Tests are conducted using two

CNNs with the same feature map sizes as in the stop consonant recognition experi-

ments. Since this experiment has a larger number of output categories it may require

an even larger number of feature maps to properly represent the data. Practical limi-

tations on training such a large database prevent training larger networks. With each

feature map there is a large number of extra convolutions and other operations that

must be performed, increasing training time significantly. Future work can include

hardware optimizations which would allow for larger networks to be trained, to see if

performance can be further improved.

We use a larger FINN for this experiment consisting of 150 hidden nodes in the

first hidden layer and 75 hidden nodes in the second layer. The TDNN has 75 feature

maps in the first layer and 39 feature maps in the second layer. In general, convergence

is faster on a per epoch basis, compared to previous experiments, since most classes

have a large number of examples. No validation set has been used, as overtraining

has not been observed on this large dataset. The results of these experiments are

shown in Table 3.7.

As we can see the increase in feature maps from the smaller CNN to the larger

CNN significantly improved performance. It has been found through preliminary

experiments with the smaller CNN, that the number of hidden nodes in the fully

connected layer did not signficantly affect results; thus the number of nodes in this

layer has been decreased in the network with more feature maps, so as to speed up

training time.
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Test Train Correct Test Correct Training Time

Network Energy Overall Correct (%) Overall (%) Class Average (%) Epochs Duration

CNN 6F-16F-120N 0.97 72.31 68.89 69.15 50 105 hrs.

CNN 20F-40F-50N 0.90 80.19 71.76 70.48 30 270 hrs.

FINN 0.99 76.1 68.68 65.48 30 25 hrs.

TDNN 1.09 67.47 63.75 63.63 50 125 hrs.

Table 3.7 Results for the full TIMIT phoneme set and example set.

The CNN has achieved better performance than the other networks in both the

class average correct rate and the overall correct rate. Even for the smaller network,

we can see that it is able to outperform the FINN on the test set.

3.6 Mixed Gender Training and Testing Condi-

tions

In order to test the ability of the CNN to perform well in mixed training and testing

conditions we have constructed a mixed gender experiment as in [13]. As discussed

previously, the female vocal tract length is generally shorter than the male vocal tract

length, thus training on only one gender and testing on the other would give us an

extreme scenario we can use to better isolate the performance in terms of vocal tract

length variability. Preliminary experiments have shown that overtraining would occur

on the female training set before the training error would converge. This is likely due

to the smaller number of examples per class. Thus we create a validation set which

would be used to determine the stopping criterion.

We choose the first 30,000 example utterances spoken by females from the TIMIT

training set. We choose another 10,000 examples as the validation set. The test set
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is chosen as the male subset of the regular TIMIT test set. This containes 33,624

utterances. We have used the same networks specified in the full training and test

set experiments. The experiments are run to convergence and the network weights

that produced the smallest validation energy are chosen for testing. The results are

summarized in Table 3.8.

Validation Test Train Correct Test Correct

Network Energy Energy Overall (%) Overall (%) Class Average (%) Epoch

CNN 20F-40F-50N 1.092 1.551 82.6 40.05 34.06 10

CNN no-subsampling 1.059 1.56 91.4 37.87 27.05 5

FINN 1.297 1.76 60.8 28.29 25.64 16

TDNN 1.334 1.728 56.73 29.83 28.70 6

Table 3.8 Results for the mixed gender training and testing conditions for
TIMIT. Unlike in previous tables, here the epoch refers to the epoch chosen
for early stopping, based on the smallest validation energy.

Silence is a much larger category compared to the other categories, as we can

see from Table 3.1. The large gap in the performance between the class average

classification rate and overall classification rate for the CNN can be in large attributed

to this category. For the CNN, the silence category had a 22.9% error rate, while for

the TDNN and FINN it was 53.4% and 50.99%, respectively. Since there might be

simpler, knowledge-based methods, for identifying this category, we should give more

consideration to the class average performance, as that can tell us more about the

networks discriminating ability, without the large bias created by the silence category.

The subsampling layer is one of the significant differences between the BWNN,

used in [15], and the CNN we have constructed. In order to study the importance of

the subsampling layers for invariance we constructed a CNN with the same structure

as the best performing CNN except without the two subsampling layers. It can be
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seen in Table 3.8 that this network performed similarly to the FINN and TDNN

networks in the per class average category. However it outperformed the the TDNN

and FINN in the overall category, due largely to its improved performance in the

silence category obtaining 27.9% error rate in this category.

The CNN significantly outperforms the other networks in both the overall and

class average performance. We can also observe that the TDNN, although perform-

ing worse on the training set then the FINN, as we have seen before, has better

performance on the test set. We can attribute this to the TDNN’s own invariant

properties.



Chapter 4

Conclusions and Future Work

4.1 Conclusion

The CNN structure’s usefulness with respect to several phonetic classification tasks

has been examined. The CNN shows improved performance over the simpler neural

network structures studied. For voiced stop consonant recognition the CNN shows

better discriminating ability on a per-class basis than the two other networks tested.

In recognizing all TIMIT categories the CNN performs significantly better than the

competing structures, furthermore there is reason to believe that if training time

is shortened, larger network structures could be tested which may obtain further

improvements. The CNN showed large improvement over the classical structures in

the mixed gender training and testing condition. This suggests a better ability to

model speaker variability.

We have found that the TDNN trained with stochastic gradient descent on larger

datasets can perform worse than the regular neural network. As discussed previously

the integration layer of TDNNs might create too much invariance when presented

with larger datasets. The smaller, more localized, subsampling windows of the CNN

61
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inspire a better mechanism for achieving similar invariance.

In our experiments it has been shown that the neural networks performance is

susceptible to various parameters. The network is sensitive to some parameters more

than others. For example some preliminary experiments have shown that the CNNs

are not easily affected by changing the kernel size or by changing the number of

nodes in the fully connected layer. However, the number of feature maps significantly

affects performance. Due to the training time needed to see how well the network

performs exhaustive parameter searches have not been implemented. Further work

in parameter selection can potentially improve performance.

4.2 Future Work

There is a great deal of extensions and work that would need to be undergone to

extend the use of convolutional networks to speech recognition. The next step in

determining the possiblities of this method within a continous speech recognition

framework is the extension into a phoneme recognizer as has been done for other dis-

criminant methods [27]. This would require development of an appropriate segmen-

tation stage as well as a model of the inter phoneme structure. This could potentially

be accomplished with a HMM as in [31]

As we have seen from the stop consonant experiments networks trained to dis-

tinguish between specific categories perform better than those trained between all

categories. This improvement can be largely attributed to variability in length be-

tween phonemes. This suggests an approach similar to [18] can be constructed, where

the broad phonetic category is first detected and then various networks are trained

for particular phonetic categories to yield a greater overall accuracy.

Another approach for dealing with variability in the length of the phoneme is
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that described in [31] and [3] as a segmented neural network. Here each segmented

phoneme is downsampled to an appropriate number of frames. The segmentation was

achieved using a HMM model and viterbi decoding.

Another extension of the CNN’s invariance can occur for frame-level training. A

one-dimensional convolutional kernel as well as subsampling layers can be constructed

to achieve invariance in frame based HMM/NN hybrid system.
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