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Abstract

The internal functional behavior of trained Deep Neural Networks is notoriously1

difficult to interpret. Activation-maximization approaches are one set of techniques2

used to interpret and analyze trained deep-learning models. These consist in finding3

inputs that maximally activate a given neuron or feature map. These inputs can4

be selected from a data set or obtained by optimization. However, interpretability5

methods may be subject to being deceived. In this work, we consider the concept of6

an adversary manipulating a model for the purpose of deceiving the interpretation.7

We propose an optimization framework for performing this manipulation and8

demonstrate a number of ways that popular activation-maximization interpretation9

techniques associated with CNNs can be manipulated to change the interpretations,10

shedding light on the reliability of these methods.11

1 Introduction12

Deep Neural Networks (DNNs) can be trained to perform many economically valuable tasks [28, 24].13

They are already pervasive in many sectors, and their prevalence is only expected to increase over time.14

With increasing computational power and ever more available amounts of data, Neural Network (NN)15

architectures are growing in size and executing more and more intricate tasks. Given the increasing16

size and complexity of DNNs, interpreting how they function, a discipline that always lags behind the17

cutting edge, may experience an ever harder time keeping up with new developments. However, for18

certain classes of critical applications, close inspection and guarantees of functionality will be more19

and more important, especially in heavily regulated and high-stakes domains. Here we ask: could a20

malicious actor conceal the true functionality of a NN from an interpretability method by modifying21

the NN? Given the increasing capacity of the architectures, this is likely to be a progressively more22

probable concern.23

Focusing on the continuously popular feature visualization [50, 35, 34] method we propose to create24

an optimization procedure to manipulate the interpretation of individual neurons of the network while25

keeping its final behavior the same. A successful modification of the interpretation results while26

keeping outputs constant is evidence for the manipulability of the interpretation approach. In this27

work, we concentrate on convnet architectures for which interpretation by activation maximization or28

feature visualization methods [50, 47] has been popular. We study the feature visualization of a neuron29

or channel norm via activation maximization and attempt to modify it while maintaining trained30

network outputs and accuracy. We investigate how to characterize these attacks quantitatively and31

show three different attacks which can effectively manipulate and explicitly obfuscate interpretations.32

The first proposed attack, push-down, aims to simply remove the current interpretation, replacing33

it with any other interpretation. The second attack, termed push-up, aims to replace the images34

with a specific category of images, allowing a more targeted manipulation. The final attack we35

consider, motivated by recent related work on feature attribution methods [1, 43], is the fairwashing36

visualization attack aimed to manipulate the perceived bias of the model as seen by an interpreter.37
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Figure 1: Illustration of the attack model for our adversarial interpretability manipulation. Top-5 images that
best activate a given neuron, seemingly capturing a shared semantic concept over classes that an interpreter may
describe and/or use an external tool to describe [21, 33]. In our framework, we assume the model creator can
manipulate the model before it is released to the interpreter. In this case, they create a model which might lead to
interpreting the selected neuron as not relating any semantic concept shared by multiple class categories.

Consider as motivation a situation where an adversary is indifferent to deploying a biased model, but38

is constrained to provide model access to a regulator (the interpreter). Critically, we assume that the39

interpreter may not have access to labels related to the particular bias exploited by the adversary’s40

model. The interpreter can use feature visualization methods (top-k images) to try to understand41

the internal logic of neurons and may visually detect that neurons are biased towards a previously42

un-categorized but undesirable bias. To prevent rejection of the biased model by the interpreter, the43

adversary may use a set of data with annotated bias attribute [46] (unavailable to the interpreter) to44

try to perform an attack by fine-tuning the model to make the feature visualization look fairer while45

maintaining the performance of the model and its overall unfair output.46

To date, most previous works on interpretability manipulability (including fairwashing) have focused47

on the manipulability of interpretability techniques such as feature attribution [43, 20] tailored for48

model predictions. Little attention has been paid to the manipulability of neuron interpretability49

techniques. This is in spite of the fact that this latter type of interpretability method is becoming50

increasingly popular because it provides a fine-grained understanding of inner structures of DNNs [35,51

34, 39]. Notably it has also been applied to create mechanistic interpretations [32, 6] which are52

argued to be robust as they directly link the function of neurons. We note that the maximization53

operation by construction is losing important information about the functional behavior, leading to54

the potential of mis-intepretation, and suggesting the possibility of manipulation.55

The primary contributions of our work are to first propose three distinct attacks on feature visualization56

and approaches and considerations to quantify and characterize their success. We then demonstrate57

all three of our attacks can achieve a degree of success (see illustration in Figure 1). This suggests that58

this class of interpretation methods must be used with caution and also cast doubt on the feasibility of59

using this tool to build complete mechanistic interpretations.60

2 Related Work61

A growing body of literature has investigated the interpretability of Convolutional Neural Networks62

(CNNs) and the lack of robustness under different manipulations of interpretability methods.63

Interpretability methods. Previous work aiming to provide interpretability of NNs can be grouped64

into two broad categories. Firstly, there are works that develop interpretable-by-design methods that65

provide interpretations without relying on external tools. These methods usually couple traditional66

layers with various types of interpretable components. Examples range from concept explana-67

tions [8, 26, 19, 13, 4], feature attributions [45, 36, 2] to part of object disentanglement [51, 42].68

Secondly, there are methods usually called post-hoc that aim to explain and understand either specific69

components (e.g., weights, neurons, layers) or outputs of a trained NN. To interpret the output of mod-70

els for a particular data instance (local interpretability), while feature attribution methods [40, 30, 41]71

such as saliency maps assign a weight to each input feature corresponding to its importance on72

the model’s output, counterfactual examples aim to give the minimal changes required to change73

the model’s output [17, 15]. There are post-hoc approaches that aim to interpret the internal logic74

of particular NNs through their components and representations. For example, there are methods75

that focus on layer representations through concept vectors [25, 52], on sub-network interpretability76

through circuits [5, 7], and individual neurons via e.g., feature visualization. Our work focuses on77

feature visualization, which is one of the most popular techniques to understand the learned features78

of individual neurons [53, 35].79
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Interpretability manipulation. There is a recent trend to analyze the reliability of interpretable80

techniques through the lens of stability. Stability aims to study to what extent the interpretability81

technique is statistically robust to reasonable input perturbations and model perturbations [20, 48].82

Most works that study input and model manipulability focus on feature attributions. For example,83

[11] designs adversarial input perturbations to change feature attributions in a targeted way, and [20]84

shows that such manipulation can be performed through adversarial model manipulation, realized85

by fine-tuning a pre-trained model to change feature attributions while keeping the same accuracy86

of the original model. Despite sharing similarities with this work thanks to the use of adversarial87

model manipulation, instead of studying the manipulability of feature attribution methods, we focus88

on neuron interpretability, which brings different challenges such as the whack-a-mole problem89

explained in Sec. 3.3. Besides input and model manipulability, recent works [1, 3, 43] have raised90

the fairwashing issue, which is the risk of misleading the assessment of unfairness of models by91

providing model interpretations that look fair, but are not. Part of our work studies the fairwashing92

risk for feature visualization, which has not been investigated to date. Finally, the most closely related93

work to ours is [12], which shows the targeted manipulability of synthetic feature visualizations94

(defined in Sec. 3.1) by early stopping during optimization. Different from this previous work, we95

instead study the manipulability of feature visualization under an adversarial model manipulation.96

3 Methods97

We introduce our notation, attacks, threat models, and attack success characterization methods.98

3.1 Notations and Background99

We denote by D = {(xi, yi)}Ni=1 a dataset for supervised learning, where xi ∈ Rd is the input and100

yi ∈ {1, ...,K} is its class label. Let fθ denote a NN, f (l)
θ (x) defines activation maps of x on the101

l-th layer, which can be decomposed into J single activation maps f (l,j)
θ (x). In particular, f (l,j)

θ (x)102

is a matrix if the l-th layer is a 2D-convolutional layer and a scalar if it is a fully connected layer. We103

aim to understand the internal behavior of individual units through feature visualization, generically104

defined by activation maximization [31, 47], i.e.,105

x∗ ∈ argmax
x∈X

f
(l,j)
θ (x), (1)

where X can be a finite set of data, e.g., X = D or a continuous space X ⊂ Rd, and (l, j) is the106
pair of layer l and neuron j. In Eq. 1, when the layer l is a convolutional layer, in the rest of the107

paper, we aggregate the activation map f
(l,j)
θ (x) using its spatial squared ℓ2-norm ∥f (l,j)

θ (x)∥22, and108

subsequently refer to j as the channel index. Additionally, we mainly focus on the case where X = D109

is a set of natural images, and we denote by top-k images the set of images that have the k highest110

values of activations for a given pair (l, j). When X ⊂ Rd, following [53], the result x∗ will be111

called synthetic feature visualization.112

3.2 Attack Framework113

We consider feature visualization with top-k images and propose an adversarial model manipulation114

that fine-tunes a pre-trained model with a loss that maintains its initial performance while changing115

the result of feature visualization. More formally, given a set of training data D, a pre-trained model116

with parameters θinitial , and an additional set of images (e.g., a set of top-k images) Dattack , our attack117

framework consists in the following optimization118

min
θ

(αLA(D,Dattack ;θ) + (1− α)LM(D;θ,θinitial)), (2)

where θ are parameters of the updated model fθ, LM(.) is the loss that aims to maintain the initial119

performance of the model fθinitial , and LA(.) is the attack loss. For the maintain objective, when120

viewing final outputs fθ(.) as a conditional distribution, our maintain loss is the distillation loss121

LM(D;θ,θinitial) = LCE(fθinitial (.)||fθ(.)) [22], where LCE is the cross entropy loss between the122

original model outputs and the attacked model outputs on training data D. As defined, this maintain123

loss enforces the fine-tuned model to keep the same predictions as the initial model with the objective124

of making the two models close in model space. Depending on the type of attack, the attack loss125

LA(.) can vary and is defined in the next sections.126

3.3 Push-Down and Push-Up Attack127

Given a set of top-k images from feature visualization, denoted by D(l,j)
attack , that best activate the layer l128

and channel j of the initial model fθ , our first attack aims to push to zero the activations of examples129
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in D(l,j)
attack . This attack is called the push-down attack, and we propose the following objective for all130

channels of a layer l simultaneously131

LA(D,Dattack ;θ) =

Jl∑
j=1

∑
x∗∈D(l,j)

attack

∥f (l,j)
θ (x∗)∥22, (3)

where Jl is the set of channels of the layer l. Note that it is possible to attack a single channel or132

channels from multiple layers. Here we focus on attacking all the channels in a layer (see Sec. 4.1).133

In the push-up decoy attack, given a set of examples in Ddecoy , we aim to make these images appear134

in the result of top-k images for all the channels of a particular layer l. For this purpose, we propose135

the following objective, where [.]+ is max(., 0):136

LA(D,Ddecoy ;θ) =

Jl∑
j=1

∑
x∗∈Ddecoy

∑
x∈D

[∥f (l,j)
θ (x)∥22 − ∥f (l,j)

θ (x∗)∥22]+. (4)

This aims to make activations of examples in Ddecoy larger than all the activations of training examples.137

Characterizing Push-Down and Push-Up Attacks We propose two approaches to characterize the138

effectiveness of an adversarial attack on the top-k images of feature visualization.139

Kendall-τ . We take a (potentially large) set of images Dkτ and compute the initial rankings Rinit,j140

of images in Dkτ w.r.t. their initial activations values for the j channel. Similarly, we compute141

the final rankings Rfinal,j using the same images, but on final (post-attack) activations values of the142

same channel j. The Kendall-τj score is the Kendall rank correlation coefficient between Rinit,j and143

Rfinal,j . We can also aggregate this metric over all channels. Higher values of Kendall-τ scores can144

be interpreted as higher similarity in the ordering of image activations between channels. As a result,145

the Kendall-τj score can be used as a metric to see how much a channel’s behavior has changed.146

CLIP-δ. We use an external, generic, visual representation model, the CLIP image encoder [38] to147

allow measuring the semantic changes in the top-k images. Given a particular layer and a channel j,148

here we compute the average cosine self-similarity between the CLIP embeddings of initial top-k149

images, which we denote by C̄ init,init
j,j and the average similarity between embeddings of initial top-k150

images and final ones (after the attack), denoted by C̄ init,final
j,j . The proposed CLIP-δ score for a channel151

j is defined as CLIP-δj = (C̄ init,init
j,j − C̄ init,final

j,j )/( 1
N−1

∑N
p=1 C̄

init,init
j,p ̸=j ). Intuitively, this quantifies the152

relative semantic change of top-k images w.r.t. CLIP embeddings and a high score can be interpreted153

as the fact that the channel j has made semantically significant changes in the top-k images.154

The Whack-A-Mole Problem. A natural question in our framework is whether the behavior and155

interpretation of one neuron can be simply moved to another neuron through the optimization process,156

for example, the Push-Down objective can be reduced by permutation. We call this the whack-a-mole157

problem. To ensure that this does not occur, we study the previously described metrics and check158

that the attacked network’s channels are not strongly correlated to other channels in the pre-attack159

network. Given the j-th channel, we define the following two metrics that measure this property.160

Kendall-τ -Wj - Using Dkτ we obtain the maximum Kendall-τ score between ranked lists Rinit,j and161

Rfinal,i where i ̸= j and normalize it by dividing it by the initial maximum Kendall-τ score i.e. the162

score over Rinit,j and Rinit,i where i ̸= j.163

CLIP-Wj - Using the top-k images in the initial model and channel j we obtain164

maxi̸=j C̄
initial,final
j,i /maxi̸=j C̄

initial,initial
j,i comparing to all top-k images in other channels of the fi-165

nal model, normalized against that same similarity metric in the initial CLIP scores.166

3.4 Fairwashing Interpretability Attack167

We consider a threat model as discussed in Sec. 1 where the attacker has a set of protected attribute168

labels they use to hide bias from an interpreter without labeled data. More formally, given a model169

fθ, which is unfair according to a certain metric of unfairness, a set of J of neurons whose top-k170

images look unfair, we aim to answer the question: can we make an adversarial model perturbation171

by fine-tuning a pre-trained model, maintaining its performance and its unfairness while making the172

top-k images of the J neurons appear fairer? In this formalization, answering affirmatively to this173

question corresponds to succeeding in the fairwashing attack.174

We design the fairwashing attack, using the same attack framework 1 defined in Sec. 3.2. One175

alternative to make the top-k images appear fairer would be to enforce the matching between top-k176

1Note we use pre-activations to capture the entire and non-truncated distribution [6]
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Figure 2: Push-down all-channel attack on Conv5 of AlexNet. All initial images have been replaced by other
images. The final validation performance was 56.2%, a drop of less than half a percent.

activations for different groups of the protected attribute. However, it was empirically observed that177

this objective fails to generalize on an unseen set because it focuses only on the tail of the distribution178

of activations. We, therefore, propose a simple yet effective attack objective that allows reducing179

the discrepancy between the distribution of pre-activations of two groups of data D0
attack and D1

attack ,180

partitioned with respect to protected attribute (e.g., gender). For this purpose, we use the following181

loss (corresponding to the maximum mean discrepancy [16] with the feature function ϕ(x) = (x, x2))182

LA(D,D0
attack ∪ D1

attack ;θ) = ∥µl
0 − µl

1∥22 + ∥ρl
0 − ρl

1∥22, (5)

where D0
attack , D1

attack are two groups of data partitioned w.r.t. the labeled protected attribute (e.g.,183

race or gender), µl
p (with p ∈ {0, 1}) is a vector of scalars µ(l,j)

p = Exp∼Dp

attack
[f

(l,j)
θ ] of first-order184

moments for layer l and neuron j, and similarly ρ
(l,j)
p = Exp∼Dp

attack
(f

(l,j)
θ )2 are second-order185

moments for the same neuron. This attack objective enforces the matching between the first two186

moments of two distributions (w.r.t. groups of protected attribute) of pre-activations of a neuron.187

4 Experiments and Results188

We now describe the experimental setup and the results obtained after running attacks. For all of our189

attacks, we use the ImageNet [10] training set as D. We use the PyTorch [37] pretrained AlexNet [27]190

for our analysis. In Appx. B.2 we provide an ablation study on EfficientNet [44] with similar findings.191

More technical details regarding hyperparameters for all the attacks can be found in Appx. B.192

Push-down and Push-Up attack. For the push-down and up attack, we consider D(l,j)
attack ⊂ D as the193

top-10 images that maximally activate the channel j of layer l. For the push-up attack, we additionally194

consider Ddecoy as 100 randomly sampled images of a particular class to be used as decoy.195

Fairwashing attack. In order to run and evaluate the fairwashing attack, we need a dataset with a196

labeled protected attribute (e.g., gender or age) to be able to assess not only model unfairness but197

also the fairness of feature visualization of a neuron. For this purpose, we use the ImageNet People198

Subtree dataset [46], which is a set of ≈ 14k images with labeled demography (gender, race and199

age), derived from ImageNet-21k. We use the 75− 25% split for training and testing sets, and D0
attack200

and D1
attack are binary groups (w.r.t. protected attribute) from the training set. We estimate model201

unfairness using two popular measures of unfairness [49], namely the difference of disparate impact202

(DDI = |p(ŷ = c|z = 0)− p(ŷ = c|z = 1|), where z is the protected attribute, c is a class and ŷ is203

the predicted class) and difference of equal opportunity (DEO = |p(ŷ = c|z = 0, y = c)− p(ŷ =204

c|z = 1, y = c)|) estimated on testing data [49, 18]. Inspired by the fairness assessment in regression205

and clustering, we use two measures to quantify the feature visualization unfairness. The first one206

looks at the entire distribution of activations and is the Kolmogorov-Smirnov (KS) distance between207

the two conditional distributions of activations given protected attribute label [29]. The second one208

only focuses on the tail of the distribution of activations, i.e., activations of top-k images, and is the209

balance [9] or ratio between the number of instances from top-k belonging to the minority group over210

the number of instances in top-k belonging to the majority group. Finally, following recent trends211

[23], we perform the fairwashing attack on the last but one layer.212

4.1 Push-Down And Push-Up Attack Experiments213

Warm-up: Single-Channel Attack. To set a first evaluation point for our attack framework,214

we apply the push-down attack to one channel Figure 3 shows the visualization of top im-215

ages before and after. We can see that after optimization, the top-k activating images of the216

neuron have been completely replaced by other images with different semantic concepts, sug-217

gesting a succesful attack with almost nearly no loss in accuracy (it decreases by 0.04%).218
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Figure 3: Top images for a channel before
and after a single-channel Push-Down attack.

One way of satisfying the attack objective perfectly in the219

single channel case is to set the channel weights to zero.220

This naive solution only loses 0.2% is to simply set all221

the weights of the channel to zero. Specifically removing222

channel 0 (by masking) decreased the accuracy by 0.2%.223

We thus consider more challenging settings.224

All-Channel Attack. Unlike the single-channel attack,225

the all-channel attack (change all neuron interpretation in226

a layer) does not have a trivial solution. Because some227

information needs to flow through the layer in order for228

classification to be successful, setting all channels to zero229

would result in catastrophic performance loss.230

We apply our attack framework to Conv5 of the AlexNet Model. In Figure 2 we show a231

selection of 3 channels and the modifications achieved under the All-Channel Push-Down at-232

tack and the aggregate metrics (averages for all channels in a layer) are shown in Table 1.233

More visual examples are provided in the Appendix. For the visualized channels (and those234

in Appendix) we observe a near complete replacement of the top-5 images by other images.235

Layer/Attack CLIP-δ Kend-τ CLIP-W Kend-τ -W Acc.(%)

Conv1 Push-Down 0.043 0.682 0.996 0.302 56.1
Conv2 Push-Down 0.056 0.612 0.994 0.151 56.3
Conv3 Push-Down 0.127 0.573 0.963 0.130 56.1
Conv4 Push-Down 0.205 0.548 0.974 0.122 56.2
Conv5 Push-Down 0.249 0.530 0.963 0.048 56.2
Conv5 Push-Up 0.150 0.654 0.962 0.011 56.3
EfficientNet L7 - Push-Down 0.262 0.503 0.971 -0.145 77.5

Table 1: Average (over channels) attack metrics for an All-Channel
Push-Down and Push-Up Attack for AlexNet (row 1-6) and Ef-
ficientNet (row 7). We observe that the relative whack-a-mole
metrics are low, suggesting this problem is not present for our at-
tacks. Lower layers are more challenging to attack leading to lower
CLIP score and higher Kendall-τ as confirmed by visual intuition.

Further, the labels of the top images236

significantly change, with minimal to237

no residual overlap. This suggests238

that not only the images have changed239

but the semantic concepts that would240

be determined by an interpreter have241

likely changed. This is opposed to242

the model simply memorizing images243

to reduce and replacing them with se-244

mantically similar ones. We further245

confirm this in the appendix by show-246

ing validation set top-k images which247

demonstrate that semantically they fol-248

low the same behavior as the training249

images (which are used for the actual attack). Overall, the attack seems to produce a generalized250

change in the behavior of the feature visualization of neurons.251

Studying the metrics comparing the channels before and after modification, we can deduce several252

different behaviors. The first two channels exhibit relatively high Kendall-τ scores, from which we253

conclude that the ordering of image activations has not undergone severe changes. This means that254

likely only a subset of images, which includes the initial top-k has moved in rank. Studying the CLIP255

distance in both cases allows us to conclude that there is significant semantic overlap in the initial256

and final top-k, which can be confirmed by visual inspection.257

This is in contrast to the channel shown at the right, where the Kendall-τ score is close to zero,258

indicating a full re-ordering of the activations. As a consequence, the CLIP distance from initial to259

final is also much higher, which matches with a visual inspection.260

In general, we observe a substantial correspondence between our visual intuition and the CLIP-δ261

and Kendall-τ , channels with low scores Kendall-τ and high CLIP-δ tend to change substantially.262

As illustrated in further examples in the Appendix one observed difference in these two metrics is263

that channels maintaining some similar classes in the top images will tend to have a lower CLIP-δ264

(suggesting less change).265

Whack-a-mole. We can further analyze the existence of the whack-a-mole problem by observing266

Fig. 5 which shows for a channel in the original model, the top-K image in the modified model which267

have the closest Kendall-τ -W and CLIP-W scores (not including the channel itself).268

We observe that the first channel (channel 2 on figure) has little to no visually discernable similarity269

to nearby channels in the modified model as well confirmed by the Kendall-τ -W. Indeed a majority of270

the channels look like this (see Appendix). On the other hand, we do observe similar images for the271

initial channel 193 and its nearest final one (163), which was picked as the most illustrative examples272

("hard" one) where the red curve of Fig. 6 is above the blue one. However, for this "hard" example,273
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Figure 5: We show the initial top images for two channels
and beneath are the corresponding final top images of closest
channels w.r.t Kendall-τ -Wj and CLIP-Wj .
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Figure 6: We compare initial CLIP similar-
ity to other channels (blue) versus similarity
after attack (red). Red and blue largely track
each other for all channels.

more insight is given by investigating the CLIP-Wj where the denominator notably measures the274

clip similarity to other channels in the original model. The score is less than or typically close to 1275

suggesting that the original model already had a high similarity to another channel. Indeed in the276

Appendix for the second example, we confirm there is a very similar channel in the original model.277

To gain further insight into CLIP-Wj in Fig.6, we further visualize the numerator and denominator278

for all the channels (red line) and sort them by the initial similarity to other channels (denominator).279

We observe that the red line is often below the blue line and if it exceeds it is not by a large relative280

amount, suggesting that channels with high whack-a-mole metrics are actually ones that already281

had similarities to other channels in the original model. Overall we conclude the presence of the282

whack-a-mole problem is minimal in our current attack.283

Effect of Depth. We now consider how the attack is affected by depth, with results for different284

layers of AlexNet shown in Tab. 1 and illustrated in Fig. 7. We observe that modifications of the285

earliest layers are significantly harder to achieve than for later layers as confirmed by the metrics and286

visual examination. We also observe a qualitative difference in the changes. For example, Conv1 and287

Conv2 are picking up low-level information such as color, edges, and textures and this is reflected288

in the type of modifications made to the images. If performance is maintained after the attack, it is289

likely that the modification objective did not have a strong impact, leading to little to no modification.290

This is reflected in the CLIP-δ scores (see Table 1)a nd in visual examination (see Appendix for291

further examples). Several explanations can account for this. Firstly, there are fewer or no modifiable292

weights upstream to the attacked layer, leading to less flexibility to accommodate the competing293

natures of the combined objective compared to later layers. Secondly, the early-layer features, while294

somewhat malleable, must collectively perform a certain set of signal-filtering operations in order to295

be able to extract meaningful information. Performing strong modifications to the filters may lead296

to unrecoverable information loss downstream. We observe that the whack-a-mole metrics are also297

relatively high for this case using Kendall-τ -W. On the other hand, the normalized CLIP-W score is298

close to 1 suggesting that this increase is not due to behavior being moved into the channel but due to299

existing redundancy in channels.

Initial top-K

Final top-K 

conv3conv1 conv2 conv4

Figure 7: Push-down attack on AlexNet across several layers. Channels are taken individually on each layer for
layer ablation, and the results demonstrate that the top images are potentially vulnerable across all layers. The
final attacked models all have a less than .5% drop from a default AlexNet.300

Push-Up Decoy Attack. We study a more targeted attack objective, namely one that actively pushes301

a set of selected images into the top activating images for every channel. This is achieved with Eq. 4,302

where the loss is non-zero as long as there exist images outside the group of selected images that303

activate higher than the group we intend to push up.304

This type of attack is more targeted and therefore likely harder than the push-down attack, which does305

not specify what images the top-k should be replaced with. The push-up attack, if successful, can306
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Channel 43 of conv_5: Kendall- : 0.740, CLIP- : 0.256

daisy corn Maltese dog papillon
Shetland
sheepdog Maltese dog

Initial top-K

goldfish goldfish goldfish wig goldfish goldfish
Final top-K

Channel 170 of conv_5: Kendall- : 0.619, CLIP- : 0.070

peacock peacock peacock peacock bell pepper tree frog
Initial top-K

goldfish peacock goldfish goldfish goldfish goldfish
Final top-K

Figure 8: Examples of channels in all-channel push-up attack. The top images were successfully put in top
images. The Kendall-τ remains relatively high (> 0.5) suggesting much of the channel behavior is preserved
while the top activating images completely obfuscate the behavior.

assign the same interpretation to every channel in a layer, making any interpretation attempt based on307

top-k images fraught, or at least minimally informative.308

Fig. 1 shows the result of the push-up attack using a collection of images with the Imagenet label309

“Goldfish” as the decoy set. Further, in Fig. 8 we show that for many channels of a layer, we can310

modify the top-10 to contain a few or consist entirely of Goldfish images. The metrics in Table 1 also311

demonstrate substantial change and a low likelihood of whack-a-mole behavior. Studying the figure312

more closely, we observe that not only Goldfish, but also other images that share certain traits with313

the Goldfish images are also boosted, suggesting a degree amount of generality of the newly imposed314

selectivity, further explored in the Appendix.315

4.1.1 Synthetic Feature Visualization316

Initial top-K

Push-Down
Final top-K 

Push-Up
Final top-K 

Synthetic Synthetic

Figure 9: Synthetic feature visualization after our attack. We observe
the visualization is largely decorrelated to top-k natural images.

We study the impact of the317

Push-Down and Push-Up at-318

tacks on the synthetic activation-319

maximizing images of the chan-320

nels under attack [50]. Syn-321

thetic activation-maximizing im-322

ages are the result of an opti-323

mization problem over input pix-324

els solved by gradient ascent on325

the channel activation under a326

norm constraint in pixel space.327

To avoid adversarial noise sam-328

ples [14] it is necessary to jitter the input image or parameterize it as a smooth function[35].329

In Fig. 9, we study the synthetic optimal images for several channels before and after the attack. By330

visual inspection, while the top-k images change drastically, the synthetic optimal image is largely331

unaffected. The most common observed change (see also Appendix) for conv5 is a low-frequency332

modulation of the pattern. We hypothesize that this is because the top-k attack most significantly333

modifies the weights of the attacked layer, which is a later layer preceded by several downsamplings.334

The lack of change in the synthetic optimal image suggests that the synthetic feature visualization335

and the top-k analysis are, counter-intuitively, highly de-correlatable. Observe, for instance, that336

the left-hand synthetic image suggests selectivity for cats even when most of the top-k images are337

goldfish. This is a worrying prospect for the top-k interpretability method. Further, this does not338

permit the conclusion that the synthetic optimal image is more robust to attack, since we have not339

explicitly run an attack against it. Rather, this suggests the space of NN weights and the possible340

functions they span is quite large, and can possibly accommodate more functionality, and attacks,341

than one might expect.342

4.2 Fairwashing Feature Visualization343

We demonstrate the application of our fairwashing attack for feature visualization as defined344

Sec. 3.4. Given an unfair (according to a certain metric of unfairness) model and a set of345

neurons whose top-activating images look unfair, we ask ourselves whether it is possible, by346

fine-tuning, to make the new set of images for the same neurons appear fairer while maintain-347

ing the same performance and bias of the initial model. We instantiate this fairwashing attack348

on an annotated subset of Imagenet data [46] (as described in Sec. 4) with gender as the pro-349

tected attribute. We first estimate the model unfairness of the pre-trained AlexNet model using350

DDI and DEO unfairness measures. Tab. 2 reports these measures for the three human classes351
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Figure 10: Kolmogorov-Smirnov (KS) distance between
the conditional distributions of each condition estimated
on the annotated testing set. We sort the channels based on
the initial KS and observe that after our fairwashing inter-
pretability attack, each channels KS is drastically reduced.
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Figure 11: Percentage of the neurons according
to their balance over the annotated testing set. Af-
ter the attack, the percentage of neurons with low
balance has decreased while the percentage of neu-
rons with high balance has increased.

(a) Initial (testing) top-30 images for unit 800:balance: 0.250 (b) Final (testing) top-30 images for unit 800:balance: 0.579

Figure 12: Top-30 images obtained for unit 800 of the last but one layer of AlexNet. Green is used for
images that stay in top-30 images after attack. Before the fairwahsing attack, (a) the initial top-30 images are
gender-biased. After the fairwashing attack, (b) the top-30 are less gender-biased: balance (fairness) measure
has almost doubled. On the other hand, the model’s unfairness has not changed.
of the ImageNet-1k dataset on which AlexNet is trained. According to this table, the initial352

AlexNet model is not totally fair, with the largest values of unfairness on the Baseball player class.353

Class

Baseball player Bridegroom Scuba diver

Acc. DDI DEO DDI DEO DDI DEO
Pre-Attack 56.45 3.38 76.92 2.67 12.34 0.28 5.26

Post-Attack 56.56 3.14 73.07 1.90 12.34 0.24 5.26

Table 2: Accuracy/fairness measures (DDI/DEO)
computed respectively on the ImageNet val. set
and on the annotated testing set. Both measures are
relatively similar before and after the fairwashing
attack while the model has decreased the bias per-
ceived by the interpreter for feature visualizations.

We identified 200 neurons of the last but one layer354

whose MILAN [21] descriptions are related to hu-355

mans (see Appendix for more details). We run our356

attack on all these neurons to prevent missing neu-357

rons whose biases may transfer to other ones. Fig. 10358

shows the results of Kolmogorov-Smirnov distance359

between the distributions of activations conditioned360

on the two gender groups. It can be observed that361

after the attack, this distance has been drastically re-362

duced, especially for highly biased neurons. This363

suggests the balance of the top-k is also improved.364

As can be seen in Fig. 11, the percentage of neurons365

whose top-k images have a low balance (low fairness) has decreased, while the percentage of neurons366

with high balance has increased, thus making feature visualization fairer. Moreover, according to367

Tab. 2, the model has almost the same accuracy and almost the same measures of unfairness (all368

cases ≤ 1% of relative difference for DDI and ≤ 4% for DEO). Note that our attack did not enforce369

any fairness constraint on the output, the maintain loss LM described in Sec. 3.2 was enough to also370

maintain model unfairness. We also depicted in Fig. 12 an example of a unit whose top-k images were371

initially biased, but have been fairwashed after running the attack by almost doubling the balance372

measure. More examples of training and testing sets can be found in the appendix.373

5 Conclusions, Limitations, and Broader Impact374

We demonstrated the adversarial model manipulability of feature visualization with top-k, proposing375

three attacks that pose varying threats. We provide experimental evidence that supports the success of376

our attacks, with little to no evidence of a whack-a-mole issue. Our metrics to systematically detect377

the presence of whack-a-mole may be imperfect as validating them requires inspecting all channels378

to validate correspondence. Future work may consider investigation of synthetic feature maps and379

how they may be attacked and generalization of the fairwashing attack beyond binary attributes.380

Broader Impact. The goal of our study has been to demonstrate a potential vulnerability in current381

interpretability methods and raise awareness of reliability and ethical risks. By showing the fairwash-382

ing attack, an apparent consequence is the possibility that an ill-intentioned individual uses this work383

to perform these attacks in order to release models that marginalize minority groups. However, we384

think that raising these risks is an essential first step towards addressing these vulnerabilities, and we385

hope our contributions provide a springboard for future discussion and protection efforts.386

9



References387

[1] U. Aïvodji, H. Arai, S. Gambs, and S. Hara. Characterizing the risk of fairwashing. Advances388

in Neural Information Processing Systems, 34:14822–14834, 2021.389

[2] D. Alvarez Melis and T. Jaakkola. Towards robust interpretability with self-explaining neural390

networks. Advances in neural information processing systems, 31, 2018.391

[3] C. Anders, P. Pasliev, A.-K. Dombrowski, K.-R. Müller, and P. Kessel. Fairwashing explanations392

with off-manifold detergent. In International Conference on Machine Learning, pages 314–323.393

PMLR, 2020.394

[4] P. Barbiero, G. Ciravegna, F. Giannini, P. Lió, M. Gori, and S. Melacci. Entropy-based395

logic explanations of neural networks. In Proceedings of the AAAI Conference on Artificial396

Intelligence, volume 36, pages 6046–6054, 2022.397

[5] J. Bastings, S. Ebert, P. Zablotskaia, A. Sandholm, and K. Filippova. "will you find these short-398

cuts?" A protocol for evaluating the faithfulness of input salience methods for text classification.399

In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,400

EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pages 976–991, 2022.401

[6] N. Cammarata, G. Goh, S. Carter, L. Schubert, M. Petrov, and C. Olah. Curve detectors. Distill,402

5(6):e00024–003, 2020.403

[7] N. Cammarata, G. Goh, S. Carter, C. Voss, L. Schubert, and C. Olah. Curve circuits. Distill,404

6(1):e00024–006, 2021.405

[8] Z. Chen, Y. Bei, and C. Rudin. Concept whitening for interpretable image recognition. Nature406

Machine Intelligence, 2(12):772–782, 2020.407

[9] F. Chierichetti, R. Kumar, S. Lattanzi, and S. Vassilvitskii. Fair clustering through fairlets.408

Advances in neural information processing systems, 30, 2017.409

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical410

image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages411

248–255, 2009.412

[11] A.-K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.-R. Müller, and P. Kessel. Explana-413

tions can be manipulated and geometry is to blame. Advances in neural information processing414

systems, 32, 2019.415

[12] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, B. Tran, and A. Madry. Adversarial robustness416

as a prior for learned representations. arXiv preprint arXiv:1906.00945, 2019.417

[13] M. Espinosa Zarlenga, P. Barbiero, G. Ciravegna, G. Marra, F. Giannini, M. Diligenti, Z. Shams,418

F. Precioso, S. Melacci, A. Weller, et al. Concept embedding models: Beyond the accuracy-419

explainability trade-off. Advances in Neural Information Processing Systems, 35:21400–21413,420

2022.421

[14] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.422

arXiv preprint arXiv:1412.6572, 2014.423

[15] Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee. Counterfactual visual explanations.424

In International Conference on Machine Learning, pages 2376–2384. PMLR, 2019.425

[16] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample426

test. The Journal of Machine Learning Research, 13(1):723–773, 2012.427

[17] R. Guidotti. Counterfactual explanations and how to find them: literature review and bench-428

marking. Data Mining and Knowledge Discovery, pages 1–55, 2022.429

[18] M. Hardt, E. Price, and N. Srebro. Equality of opportunity in supervised learning. Advances in430

neural information processing systems, 29, 2016.431

10



[19] M. Havasi, S. Parbhoo, and F. Doshi-Velez. Addressing leakage in concept bottleneck models.432

In Advances in Neural Information Processing Systems, 2022.433

[20] J. Heo, S. Joo, and T. Moon. Fooling neural network interpretations via adversarial model434

manipulation. Advances in Neural Information Processing Systems, 32, 2019.435

[21] E. Hernandez, S. Schwettmann, D. Bau, T. Bagashvili, A. Torralba, and J. Andreas. Natu-436

ral language descriptions of deep visual features. In International Conference on Learning437

Representations, 2022.438

[22] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network, 2015. cite439

arxiv:1503.02531Comment: NIPS 2014 Deep Learning Workshop.440

[23] P. Izmailov, P. Kirichenko, N. Gruver, and A. G. Wilson. On feature learning in the presence of441

spurious correlations. Advances in Neural Information Processing Systems, 35:38516–38532,442

2022.443

[24] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-444

ford, J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv preprint445

arXiv:2001.08361, 2020.446

[25] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al. Interpretability beyond447

feature attribution: Quantitative testing with concept activation vectors (tcav). In International448

conference on machine learning, pages 2668–2677. PMLR, 2018.449

[26] P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, and P. Liang. Concept450

bottleneck models. In International Conference on Machine Learning, pages 5338–5348.451

PMLR, 2020.452

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional453

neural networks. Advances in Neural Information Processing Systems, 25, 2012.454

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional455

neural networks. Communications of the ACM, 60(6):84–90, 2017.456

[29] M. Liu, L. Ding, D. Yu, W. Liu, L. Kong, and B. Jiang. Conformalized fairness via quantile457

regression. In Advances in Neural Information Processing Systems, 2022.458

[30] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. Advances459

in neural information processing systems, 30, 2017.460

[31] A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them.461

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages462

5188–5196, 2015.463

[32] N. Nanda, L. Chan, T. Liberum, J. Smith, and J. Steinhardt. Progress measures for grokking via464

mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.465

[33] T. Oikarinen and T.-W. Weng. Clip-dissect: Automatic description of neuron representations in466

deep vision networks. arXiv preprint arXiv:2204.10965, 2022.467

[34] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and S. Carter. Zoom in: An introduction468

to circuits. Distill, 2020. https://distill.pub/2020/circuits/zoom-in.469

[35] C. Olah, A. Mordvintsev, and L. Schubert. Feature visualization. Distill, 2017.470

https://distill.pub/2017/feature-visualization.471

[36] J. Parekh, P. Mozharovskyi, and F. d’Alché Buc. A framework to learn with interpretation.472

Advances in Neural Information Processing Systems, 34:24273–24285, 2021.473

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,474

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning475

library. Advances in neural information processing systems, 32, 2019.476

11



[38] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,477

P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.478

In International conference on machine learning, pages 8748–8763. PMLR, 2021.479

[39] T. Räukur, A. Ho, S. Casper, and D. Hadfield-Menell. Toward transparent ai: A survey on480

interpreting the inner structures of deep neural networks. arXiv e-prints, pages arXiv–2207,481

2022.482

[40] M. T. Ribeiro, S. Singh, and C. Guestrin. " why should i trust you?" explaining the predictions of483

any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge484

discovery and data mining, pages 1135–1144, 2016.485

[41] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual486

explanations from deep networks via gradient-based localization. In Proceedings of the IEEE487

international conference on computer vision, pages 618–626, 2017.488

[42] W. Shen, Z. Wei, S. Huang, B. Zhang, J. Fan, P. Zhao, and Q. Zhang. Interpretable compositional489

convolutional neural networks. In Proceedings of the International Joint Conference on Artificial490

Intelligence, 2021.491

[43] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju. Fooling lime and shap: Adversarial492

attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM Conference on AI,493

Ethics, and Society, pages 180–186, 2020.494

[44] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In495

International conference on machine learning, pages 6105–6114. PMLR, 2019.496

[45] R. Wang, X. Wang, and D. Inouye. Shapley explanation networks. In International Conference497

on Learning Representations, 2021.498

[46] K. Yang, K. Qinami, L. Fei-Fei, J. Deng, and O. Russakovsky. Towards fairer datasets: Filtering499

and balancing the distribution of the people subtree in the imagenet hierarchy. In Proceedings500

of the 2020 conference on fairness, accountability, and transparency, pages 547–558, 2020.501

[47] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural networks502

through deep visualization. arXiv preprint arXiv:1506.06579, 2015.503

[48] B. YU. Stability. Bernoulli, pages 1484–1500, 2013.504

[49] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi. Fairness constraints: A505

flexible approach for fair classification. The Journal of Machine Learning Research, 20(1):2737–506

2778, 2019.507

[50] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European508

conference on computer vision, pages 818–833. Springer, 2014.509

[51] Q. Zhang, Y. N. Wu, and S.-C. Zhu. Interpretable convolutional neural networks. In Proceedings510

of the IEEE conference on computer vision and pattern recognition, pages 8827–8836, 2018.511

[52] B. Zhou, Y. Sun, D. Bau, and A. Torralba. Interpretable basis decomposition for visual512

explanation. In Proceedings of the European Conference on Computer Vision (ECCV), pages513

119–134, 2018.514

[53] R. S. Zimmermann, J. Borowski, R. Geirhos, M. Bethge, T. Wallis, and W. Brendel. How well515

do feature visualizations support causal understanding of cnn activations? Advances in Neural516

Information Processing Systems, 34:11730–11744, 2021.517

12


